Lactic Acid: Industrial Synthesis, Microorganisms-Producers and Substrates: A Review
Attachment | Size |
---|---|
full_text.pdf | 499.97 KB |
Keywords:
[1] Organic acid market. Market Research & Business Intelligence. Future Market Insights. https://www.futuremarketinsights.com/reports/global-organic-acids-market (accessed 2023-11-27).
[2] Lactic Acid Market Size, Share and Trends Report, 2030. Market Research Reports & Consulting. Grand View Research. https://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly... (date of accessed 2023-11-27).
[3] Lap, M. O.; Kanbur, Y.; Tayfun, Ü. The Use of Mussel Shell as a Bio-Additive for Poly(Lactic Acid) Based Green Composites. Chem. Chem. Technol. 2021, 15, 621-626. https://doi.org/10.23939/chcht15.04.621
https://doi.org/10.23939/chcht15.04.621
[4] Levytskyi, V.; Katruk, D.; Masyuk, A.; Kysil, Kh.; Bratychak, M.; Chopyk N. Resistance of polylactide materials to water mediums of the various natures. Chem. Chem. Technol. 2021, 15, 191-197. https://doi.org/10.23939/chcht15.02.191
https://doi.org/10.23939/chcht15.02.191
[5] Liu, L.; Jin, T.; Finkenstadt, V.; Liu, C-K.; Cooke, P.; Coffin, D., Hicks, K.; Samer, Ch. Antimicrobial Packaging Materials from Poly(Lactic Acid) Incorporated with Pectin-Nisaplin® Microparticles. Chem. Chem. Technol. 2009, 3, 221-230. https://doi.org/10.23939/chcht03.03.221
https://doi.org/10.23939/chcht03.03.221
[6] Lactic acid. Application, properties and characteristics. ChemElement. Store of mineral fertilizers and chemical raw materials. https://him-element.com.ua/uk/news/138 (accessed 2023-11-27).
[7] Rybachuk, V. Lactic acid. Pharmaceutical encyclopedia. https://www.pharmencyclopedia.com.ua/arti-cle/7010/kislota-molochna (accessed 2023-11-27).
[8] Lactic acid. LOST Ltd. Ivano-Frankivsk. https://lost-ltd.if.ua/molochna-kyslota/ (accessed 2023-11-27).
[9] Lactic acid 40% 100 ml. Basalt - Animal Health. https://basalt.net.ua/ua/lactic-acid-100ml/ (accessed 2023-11-27).
[10] Karande, R. D.; Abitha, V. K.; Rane, A. V.; Mishra R. K. Preparation of polylactide from synthesized lactic acid and effect of reaction parameters on conversion. Journal of Materials Science and Engineering with Advanced Technology 2016, 12, 1-37. http://dx.doi.org/10.18642/jmseat_7100121546
https://doi.org/10.18642/jmseat_7100121546
[11] Komesu, A.; Oliveira, J.A.R.; Martins, L.H.; Wolf Maciel, M.R.; Maciel Filho, R. Lactic Acid Production to Purification: A Review. Bioresources 2017, 12, 4364-4383. https://doi.org/10.15376/biores.12.2.4364-4383
https://doi.org/10.15376/biores.12.2.4364-4383
[12] Vaidya, A.N.; Pandey, R.A.; Mudliar, S.; Kumar, M.S.; Chakrabarty, T.; Devotta, S. Production and Recovery of Lactic Acid for Polylactide-An Overview. Crit. Rev. Environ. Sci. Technol. 2005, 35, 429-467. https://doi.org/10.1080/10643380590966181
https://doi.org/10.1080/10643380590966181
[13] Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent Advances in Lactic Acid Production by Microbial Fermentation Processes. Biotechnol. Adv. 2013, 31, 877-902. https://doi.org/10.1016/j.biotechadv.2013.04.002
https://doi.org/10.1016/j.biotechadv.2013.04.002
[14] Wang, Y.; Tashiro, Y.; Sonomoto, K. Fermentative Production of Lactic Acid from Renewable Materials: Recent Achievements, Prospects, and Limits. J. Biosci. Bioeng. 2015, 119, 10-18. https://doi.org/10.1016/j.jbiosc.2014.06.003
https://doi.org/10.1016/j.jbiosc.2014.06.003
[15] Klotz, S.; Kaufmann, N.; Kuenz, A.; Prüße, U. Biotechnological Production of Enantiomerically Pure D-Lactic Acid. Appl. Microbiol. Biotechnol. 2016, 100, 9423-9437. https://doi.org/10.1007/s00253-016-7843-7
https://doi.org/10.1007/s00253-016-7843-7
[16] Krishna, B.S; Saibaba, N.; Gantala, S.S.N.; Tarun, B.; Gopinadh, R. Industrial Production of Lactic Acid and Its Applications. Int. J. Biotechnol. Res. 2018, 1, 42-54. https://www.researchgate.net/publication/330292057_Industrial_production.... (accessed 2023-11-27).
[17] Wee, Y.-J.; Kim, J.-N.; Ryu, H.-W. Biotechnological Production of Lactic Acid and Its Recent Applications Food Technol. Food Technol. Biotechnol. 2006, 44, 163-172. https://api.semanticscholar.org/CorpusID:28612386 (accessed 2023-11-27)
[18] Bondar, I.V.; Hulyayev, V.M. Promyslova mikrobiolohiya Kharchova i ahrobiotekhnolohiya; DDTU: Dniprodzerzhynsʹk, 2004. [in UKrainian].
[19] Pohanka, M. D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. BioMed Res. Int. [Online] 2020, 2020, 3419034. https://doi.org/10.1155/2020/3419034 Published online: June 18, 2020. https://www.hindawi.com/journals/bmri/2020/3419034/(accessed 2023-11-27)
[20] Gao, T.; Wong, Y.; Ng, C.; Ho, K. L-Lactic Acid Production by Bacillus Subtilis MUR1. Bioresour. Technol. 2012, 121, 105-110. https://doi.org/10.1016/j.biortech.2012.06.108
https://doi.org/10.1016/j.biortech.2012.06.108
[21] Payot, T.; Chemaly, Z.; Fick, M. Lactic Acid Production by Bacillus Coagulans-Kinetic Studies and Optimization of Culture Medium for Batch and Continuous Fermentations. Enzyme Microb. Technol. 1999, 24, 191-199. https://doi.org/10.1016/S0141-0229(98)00098-2
https://doi.org/10.1016/S0141-0229(98)00098-2
[22] Castells, A.; Leon, A.; Sosa, D.; Cadena, I.; Ramírez, D.; Serrano, L.; Larrea, F.; Almeida-Streitwieser, D.; Alvarez-Barreto, J. Evaluation of Lactic Acid Production by Different Bacillus Subtilis Strains Isolated From Theobroma Cacao Crops in Ecuador. Chem. Eng. Trans. 2022, 93, 55-60. https://doi.org/10.3303/CET2293010
[23] Liu, H.; Kang, J.; Qi, Q.; Chen, G. Production of Lactate in Escherichia Coli by Redox Regulation Genetically and Physiologically. Appl. Biochem. Biotechnol. 2011, 164, 162-169. https://doi.org/10.1007/s12010-010-9123-9
https://doi.org/10.1007/s12010-010-9123-9
[24] Chang, D.-E.; Jung, H.-C.; Rhee, J.-S.; Pan, J.-G. Homofermentative Production of D-Orl-Lactate in Metabolically Engineered Escherichia Coli RR1. Appl. Environ. Microbiol. 1999, 65, 1384-1389. https://doi.org/10.1128/AEM.65.4.1384-1389.1999
https://doi.org/10.1128/AEM.65.4.1384-1389.1999
[25] Okino, S.; Suda, M.; Fujikura, K.; Inui, M.; Yukawa, H. Production of D-Lactic Acid by Corynebacterium Glutamicum under Oxygen Deprivation. Appl. Microbiol. Biotechnol. 2008, 78, 449-454. https://doi.org/10.1007/s00253-007-1336-7
https://doi.org/10.1007/s00253-007-1336-7
[26] Björkroth, J.; Koort, J. Lactic Acid Bacteria: Taxonomy and Biodiversity. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier, 2011; pp. 45-48. https://doi.org/10.1016/B978-0-12-374407-4.00255-7
https://doi.org/10.1016/B978-0-12-374407-4.00255-7
[27] Mozzi, F. Lactic Acid Bacteria. In Encyclopedia of Food and Health; Elsevier, 2016; pp. 501-508. https://doi.org/10.1016/b978-0-12-384947-2.00414-1
https://doi.org/10.1016/B978-0-12-384947-2.00414-1
[28] Chervetsova, V. Mikrobiolohiya: konspekt lektsiy; Vydavnytstvo Lʹvivsʹkoyi politekhniky: Lʹviv, 2016 [in Ukrainian].
[29] Abedi, E.; Lactic Acid Production - Producing Microorganisms and Substrates Sources - State of Art. Heliyon 2020, 6, e04974. https://doi.org/10.1016/j.heliyon.2020.e04974
https://doi.org/10.1016/j.heliyon.2020.e04974
[30] UK Standards for Microbiology Investigations Identification of Bacillus Species. Bacteriology - Identification Issued by the Standards Unit, Microbiology Services, PHE, 2014. https://assets.publishing.service.gov.uk/media/5ac4e7cc40f0b60a4e1b0e7a/... (accessed 2023-11-27)
[31] Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The Population Genetics of Commensal Escherichia Coli. Nat. Rev. Microbiol. 2010, 8, 207-217. https://doi.org/10.1038/nrmicro2298
https://doi.org/10.1038/nrmicro2298
[32] Förster, A.H.; Gescher, J. Metabolic Engineering of Escherichia Coli for Production of Mixed-Acid Fermentation End Products. Front. Bioeng. Biotechnol. [Online] 2014, 2, 16. https://doi.org/10.3389/fbioe.2014.00016
https://doi.org/10.3389/fbioe.2014.00016
[33] Wolfe, A.J. The Acetate Switch. Microbiol. Mol. Biol. Rev. 2005, 69, 12-50. https://doi.org/10.1128/mmbr.69.1.12-50.2005
https://doi.org/10.1128/MMBR.69.1.12-50.2005
[34] Gopinath, V.; Nampoothiri, K.M. Corynebacterium glutamicum. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier, 2014; pp. 504-517. https://doi.org/10.1016/B978-0-12-384730-0.00076-8
https://doi.org/10.1016/B978-0-12-384730-0.00076-8
[35] Lee, J.A.; Ahn, J.H.; Lee, S.Y. Organic Acids: Succinic and Malic Acids. In Comprehensive Biotechnology, 3nd ed.; Elsevier, 2019; pp. 172-187. https://doi.org/10.1016/B978-0-444-64046-8.00159-2
https://doi.org/10.1016/B978-0-444-64046-8.00159-2
[36] Inui, M.; Murakami, S.; Okino, S.; Kawaguchi, H.; Vertès, AA; Yukawa, H. Metabolic Analysis of Corynebacterium Glutamicum During Lactate and Succinate Productions Under Oxygen Deprivation Conditions. J. Mol. Microbiol. Biotechnol. 2004, 7, 182-196. https://doi.org/10.1159/000079827
https://doi.org/10.1159/000079827
[37] de la Torre, I.; Ladero, M.; Santos, V.E. D-Lactic Acid Production From Orange Waste Enzymatic Hydrolysates With L. Delbrueckii Cells in Growing and Resting State. Ind. Crops. Prod. 2020, 146, 112176. https://doi.org/10.1016/j.indcrop.2020.112176
https://doi.org/10.1016/j.indcrop.2020.112176
[38] Kotzamanidis, Ch.; Roukas, T.; Skaracis, G.N. Optimization of Lactic Acid Production from Beet Molasses by Lactobacillus Delbrueckii NCIMB 8130. World J. Microbiol. Biotechnol. 2002, 18, 441-448. https://doi.org/10.1023/a:1015523126741.
https://doi.org/10.1023/A:1015523126741
[39] Tian, X.; Liu, X.; Zhang, Y.; Chen, Y.; Hang, H.; Chu, J.; Zhuang, Y. Metabolic Engineering Coupled With Adaptive Evolution Strategies for the Efficient Production of High-Quality L-Lactic Acid by Lactobacillus Paracasei. Bioresour. Technol. 2021, 323, 124549. https://doi.org/10.1016/j.biortech.2020.124549
https://doi.org/10.1016/j.biortech.2020.124549
[40] Li, Z.; Lu, J.; Zhao, L.; Xiao, K.; Tan, T. Improvement of L-Lactic Acid Production under Glucose Feedback Controlled Culture by Lactobacillus Rhamnosus. Appl. Biochem. Biotechnol. 2010, 162, 1762-1767 https://doi.org/10.1007/s12010-010-8957-5
https://doi.org/10.1007/s12010-010-8957-5
[41] Shi, S.; Kang, L.; Lee, Y.Y. Production of Lactic Acid from the Mixture of Softwood Pre-Hydrolysate and Paper Mill Sludge by Simultaneous Saccharification and Fermentation. Appl. Biochem. Biotechnol. 2015, 175, 2741-2754. https://doi.org/10.1007/s12010-014-1451-8
https://doi.org/10.1007/s12010-014-1451-8
[42] Liu, P.; Zheng, Z.; Xu, Q.; Qian, Z.; Liu, J.; Ouyang, J. Valorization of Dairy Waste for Enhanced D-Lactic Acid Production at Low Cost. Process Biochem. 2018, 71, 18-22. https://doi.org/10.1016/j.procbio.2018.05.014 [43] Kim, H. O.; Wee, Y. J.; Kim, J. N.; Yun, J. S.; Ryu, H. W. Production of Lactic Acid From Cheese Whey by Batch and Repeated Batch Cultures of Lactobacillus Sp. RKY2. Appl. Biochem. Biotechnol. 2006, 131, 694-704. https://doi.org/10.1385/ABAB:131:1:694
https://doi.org/10.1385/ABAB:131:1:694
[44] Büyükkileci, A.O.; Harsa, S. Batch Production of L(+) Lactic Acid From Whey by Lactobacillus Casei(NRRL B-441). J. Chem. Technol. Biotechnol. 2004, 79, 1036-1040. https://doi.org/10.1002/jctb.1094
https://doi.org/10.1002/jctb.1094
[45] de Oliveira, J.; Porto de Souza Vandenberghe, L.; Zwiercheczewski de Oliveira, P.; Murawski de Mello, A. F.; Rodrigues, C.; Singh Nigam, P.; Faraco, V.; Soccol, C.R. Bioconversion of Potato-Processing Wastes Into an Industrially-Important Chemical Lactic Acid. Bioresour. Technol. Rep. 2021, 15, 100698. https://doi.org/10.1016/j.biteb.2021.100698
https://doi.org/10.1016/j.biteb.2021.100698
[46] Shi, Z.; Wei, P.; Zhu, X.; Cai, J.; Huang, L.; Xu, Z. Efficient Production of L-Lactic Acid From Hydrolysate of Jerusalem Artichoke With Immobilized Cells of Lactococcus Lactis in Fibrous Bed Bioreactors. Enzyme Microb. Technol. 2012, 51, 263-268. https://doi.org/10.1016/j.enzmictec.2012.07.007
https://doi.org/10.1016/j.enzmictec.2012.07.007
[47] Oh, H.; Wee, Y.-J.; Yun, J.-S.; Ryu, H.-W. Lactic Acid Production through Cell-Recycle Repeated-Batch Bioreactor. Appl. Biochem. Biotechnol. 2003, 107, 603-614. https://doi.org/10.1385/ABAB:107:1-3:603
https://doi.org/10.1385/ABAB:107:1-3:603
[48] Wee, Y.-J.; Kim, J.-N.; Yun, J.-S.; Ryu, H.-W. Utilization of Sugar Molasses for Economical L(+)-Lactic Acid Production by Batch Fermentation of Enterococcus Faecalis. Enzyme Microb. Technol. 2004, 35, 568-573. https://doi.org/10.1016/j.enzmictec.2004.08.008
https://doi.org/10.1016/j.enzmictec.2004.08.008
[49] Cox, R.; Narisetty, V.; Nagarajan, S.; Agrawal, D.; Ranade, V.V.; Salonitis, K.; Venus, J.; Kumar, V. High-Level Fermentative Production of Lactic Acid From Bread Waste Under Non-Sterile Conditions With a Circular Biorefining Approach and Zero Waste Discharge. Fuel 2022, 313, 122976. https://doi.org/10.1016/j.fuel.2021.122976
https://doi.org/10.1016/j.fuel.2021.122976
[50] Xu, K.; Xu, P. Efficient Production of L-Lactic Acid Using Co-Feeding Strategy Based on Cane Molasses/Glucose Carbon Sources. Bioresour. Technol. 2014, 153, 23-29. https://doi.org/10.1016/j.biortech.2013.11.057
https://doi.org/10.1016/j.biortech.2013.11.057
[51] Budhavaram, N.K.; Fan, Z. Production of Lactic Acid from Paper Sludge Using Acid-Tolerant, Thermophilic Bacillus Coagulan Strains. Bioresour. Technol. 2009, 100, 5966-5972. https://doi.org/10.1016/j.biortech.2009.01.080
https://doi.org/10.1016/j.biortech.2009.01.080
[52] Ye, L.; Zhou, X.; Hudari, M.S.B.; Li, Z.; Wu, J.C. Highly Efficient Production of L-Lactic Acid From Xylose by Newly Isolated Bacillus Coagulans C106. Bioresour. Technol. 2013, 132, 38-44. https://doi.org/10.1016/j.biortech.2013.01.011
https://doi.org/10.1016/j.biortech.2013.01.011
[53] Meng, Y.; Xue, Y.; Yu, B.; Gao, C.; Ma, Y. Efficient Production of L-Lactic Acid With High Optical Purity by Alkaliphilic Bacillus Sp. WL-S20. Bioresour. Technol. 2012, 116, 334-339. https://doi.org/10.1016/j.biortech.2012.03.103
https://doi.org/10.1016/j.biortech.2012.03.103
[54] Tian, K.; Chen, X.; Shen, W.; Prior, B.A.; Shi G.; Singh S.; Wang Z. High-Efficiency Conversion of Glycerol to D-Lactic Acid with Metabolically Engineered Escherichia Coli. Afr. J. Biotechnol. 2012, 11, 4860-4867. https://doi.org/10.5897/ajb11.3464
https://doi.org/10.5897/AJB11.3464
[55] Wang, Y.; Li, K.; Huang, F.; Wang, J.; Zhao, J.; Zhao, X.; Garza, E.; Manow, R.; Grayburn, S.; Zhou, S. Engineering and Adaptive Evolution of Escherichia Coli W for L-Lactic Acid Fermentation From Molasses and Corn Steep Liquor Without Additional Nutrients. Bioresour. Technol. 2013, 148, 394-400. https://doi.org/10.1016/j.biortech.2013.08.114
https://doi.org/10.1016/j.biortech.2013.08.114
[56] Liu, Y.; Gao, W.; Zhao, X.; Wang, J.; Garza, E.; Manow, R.; Zhou, S. Pilot Scale Demonstration of D -Lactic Acid Fermentation Facilitated by Ca(OH)2 Using a Metabolically Engineered Escherichia Coli. Bioresour. Technol. 2014, 169, 559-565. https://doi.org/10.1016/j.biortech.2014.06.056
https://doi.org/10.1016/j.biortech.2014.06.056
[57] Wang, Y.; Meng, H.; Cai, D.; Wang, B.; Qin, P.; Wang, Z.; Tan, T. Improvement of L-Lactic Acid Productivity From Sweet Sorghum Juice by Repeated Batch Fermentation Coupled With Membrane Separation. Bioresour. Technol. 2016, 211, 291-297. https://doi.org/10.1016/j.biortech.2016.03.095
https://doi.org/10.1016/j.biortech.2016.03.095
[58] Liang, S.; McDonald, A.G.; Coats, E.R. Lactic Acid Production From Potato Peel Waste by Anaerobic Sequencing Batch Fermentation Using Undefined Mixed Culture. Waste Manage. 2015, 45, 51-56. https://doi.org/10.1016/j.wasman.2015.02.004
https://doi.org/10.1016/j.wasman.2015.02.004
[59] Lian, T.; Zhang, W.; Cao, Q.; Wang, S.; Dong, H. Enhanced Lactic Acid Production from the Anaerobic Co-Digestion of Swine Manure with Apple or Potato Waste via Ratio Adjustment. Bioresour. Technol. 2020, 318, 124237. https://doi.org/10.1016/j.biortech.2020.124237
https://doi.org/10.1016/j.biortech.2020.124237
[60] Xiaodong, W.; Xuan, G.; Rakshit, S.K. Direct Fermentative Production of Lactic Acid on Cassava and Other Starch Substrates. Biotechnol. Lett. 1997, 19, 841-843. https://doi.org/10.1023/A:1018321200591
https://doi.org/10.1023/A:1018321200591
[61] Reddy, G.; Altaf, Md.; Naveena, B.J.; Venkateshwar, M.; Kumar, E.V. Amylolytic Bacterial Lactic Acid Fermentation - a Review. Biotechnol. Adv. 2008, 26, 22-34. https://doi.org/10.1016/j.biotechadv.2007.07.004
https://doi.org/10.1016/j.biotechadv.2007.07.004
[62] Kerketta, A.; Panda, T.C.; Ray, R.C.; Behera, S.S. Amylolytic Lactic Acid Bacteria: Cell Factories for Direct Lactic Acid Production from Biomass by Simultaneous Saccharification and Fermentation. In Lactic Acid Bacteria as Cell Factories; Elsevier, 2023; pp. 199-217. https://doi.org/10.1016/B978-0-323-91930-2.00003-1
https://doi.org/10.1016/B978-0-323-91930-2.00003-1
[63] Cui, F.; Li, Y.; Wan, C. Lactic Acid Production From Corn Stover Using Mixed Cultures of Lactobacillus Rhamnosus and Lactobacillus Brevis. Bioresour. Technol. 2011, 102, 1831-1836. https://doi.org/10.1016/j.biortech.2010.09.063
https://doi.org/10.1016/j.biortech.2010.09.063
[64] Bai, Z.; Gao, Z.; Sun, J.; Wu, B.; He, B. D-Lactic Acid Production by Sporolactobacillus Inulinus YBS1-5 With Simultaneous Utilization of Cottonseed Meal and Corncob Residue. Bioresour. Technol. 2016, 207, 346-352. https://doi.org/10.1016/j.biortech.2016.02.007
https://doi.org/10.1016/j.biortech.2016.02.007
[65] John, R.P.; Nampoothiri, K.M.; Pandey, A. Simultaneous Saccharification and Fermentation of Cassava Bagasse for L-(+)-Lactic Acid Production Using Lactobacilli. Appl. Biochem. Biotechnol. 2006, 134, 263-272. https://doi.org/10.1385/ABAB:134:3:263
https://doi.org/10.1385/ABAB:134:3:263
[66] Sreenath, H.K.; Moldes, A.B.; Koegel, R.G.; Straub, R.J. Lactic Acid Production from Agricultural Residues. Biotechnol. Lett. 2001, 23, 179-184. https://doi.org/10.1023/A:1005651117831
https://doi.org/10.1023/A:1005651117831
[67] Moldes, A.B.; Alonso, J.L.; Parajó, J.C. Strategies to Improve the Bioconversion of Processed Wood into Lactic Acid by Simultaneous Saccharification and Fermentation. J. Chem. Technol. Biotechnol. 2001, 76, 279-284. https://doi.org/10.1002/jctb.381
https://doi.org/10.1002/jctb.381
[68] Wee, Y.J.; Yun, J.S.; Kim, D.; Ryu, H.W. Batch and Repeated Batch Production of L(+)-Lactic Acid by Enterococcus Faecalis RKY1 Using Wood Hydrolyzate and Corn Steep Liquor. J. Ind. Microbiol. Biotechnol. 2006, 33, 431-435. https://doi.org/10.1007/s10295-006-0084-5
https://doi.org/10.1007/s10295-006-0084-5
[69] Panesar, P.; Kennedy, J.; Gandhi, D.; Bunko, K. Bioutilization of Whey for Lactic Acid Production. Food Chem. 2007, 105, 1-14. https://doi.org/10.1016/j.foodchem.2007.03.035
https://doi.org/10.1016/j.foodchem.2007.03.035
[70] Dumbrepatil, A.; Adsul, M.; Chaudhary, S.; Khire, J.; Gokhale, D. Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus Delbrueckii Subsp. Delbrueckii Mutant Uc-3 in Batch Fermentation. Appl. Environ. Microbiol. 2007, 74, 333-335. https://doi.org/10.1128/aem.01595-07
https://doi.org/10.1128/AEM.01595-07
[71] Mladenović, D.; Pejin, J.; Kocić-Tanackov, S.; Radovanović, Ž.; Djukić-Vuković, A.; Mojović, L. Lactic Acid Production on Molasses Enriched Potato Stillage by Lactobacillus Paracasei Immobilized Onto Agro-Industrial Waste Supports. Ind. Crop. Prod. 2018, 124, 142-148. https://doi.org/10.1016/j.indcrop.2018.07.081
https://doi.org/10.1016/j.indcrop.2018.07.081
[72] Alonso, S.; Herrero, M.; Rendueles, M.; Díaz, M. Residual Yoghurt Whey for Lactic Acid Production. Biomass Bioenergy 2010, 34, 931-938. https://doi.org/10.1016/j.biombioe.2010.01.041
https://doi.org/10.1016/j.biombioe.2010.01.041
[73] Song, L.; Yang, D.; Liu, R.; Liu, S.; Dai, L.; Dai, X. Microbial Production of Lactic Acid From Food Waste: Latest Advances, Limits, and Perspectives. Bioresour. Technol. 2021, 126052. https://doi.org/10.1016/j.biortech.2021.126052
https://doi.org/10.1016/j.biortech.2021.126052