Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Lactic Acid: Industrial Synthesis, Microorganisms-Producers and Substrates: A Review

Dmytro Kiiv1, Sofiya Vasylyuk1, Vira Lubenets1
Affiliation: 
1 Lviv Polytechnic National University, Stepan Bandera st., 12, Lviv, Ukraine, 79013 dimakiiv@gmail.com
DOI: 
https://doi.org/10.23939/chcht18.02.157
AttachmentSize
PDF icon full_text.pdf499.97 KB
Abstract: 
The article contains comprehensive information on groups of bacteria producing lactic acid, which have high metabolic activity and can be used in industrial production. In addition, an overview of the most common fermentation methods (batch, continuous, multiple), as well as cheap carbon sources: starch and cellulose-containing, industrial and food waste is provided.
References: 

[1] Organic acid market. Market Research & Business Intelligence. Future Market Insights. https://www.futuremarketinsights.com/reports/global-organic-acids-market (accessed 2023-11-27).

[2] Lactic Acid Market Size, Share and Trends Report, 2030. Market Research Reports & Consulting. Grand View Research. https://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly... (date of accessed 2023-11-27).

[3] Lap, M. O.; Kanbur, Y.; Tayfun, Ü. The Use of Mussel Shell as a Bio-Additive for Poly(Lactic Acid) Based Green Composites. Chem. Chem. Technol. 2021, 15, 621-626. https://doi.org/10.23939/chcht15.04.621
https://doi.org/10.23939/chcht15.04.621

[4] Levytskyi, V.; Katruk, D.; Masyuk, A.; Kysil, Kh.; Bratychak, M.; Chopyk N. Resistance of polylactide materials to water mediums of the various natures. Chem. Chem. Technol. 2021, 15, 191-197. https://doi.org/10.23939/chcht15.02.191
https://doi.org/10.23939/chcht15.02.191

[5] Liu, L.; Jin, T.; Finkenstadt, V.; Liu, C-K.; Cooke, P.; Coffin, D., Hicks, K.; Samer, Ch. Antimicrobial Packaging Materials from Poly(Lactic Acid) Incorporated with Pectin-Nisaplin® Microparticles. Chem. Chem. Technol. 2009, 3, 221-230. https://doi.org/10.23939/chcht03.03.221
https://doi.org/10.23939/chcht03.03.221

[6] Lactic acid. Application, properties and characteristics. ChemElement. Store of mineral fertilizers and chemical raw materials. https://him-element.com.ua/uk/news/138 (accessed 2023-11-27).

[7] Rybachuk, V. Lactic acid. Pharmaceutical encyclopedia. https://www.pharmencyclopedia.com.ua/arti-cle/7010/kislota-molochna (accessed 2023-11-27).

[8] Lactic acid. LOST Ltd. Ivano-Frankivsk. https://lost-ltd.if.ua/molochna-kyslota/ (accessed 2023-11-27).

[9] Lactic acid 40% 100 ml. Basalt - Animal Health. https://basalt.net.ua/ua/lactic-acid-100ml/ (accessed 2023-11-27).

[10] Karande, R. D.; Abitha, V. K.; Rane, A. V.; Mishra R. K. Preparation of polylactide from synthesized lactic acid and effect of reaction parameters on conversion. Journal of Materials Science and Engineering with Advanced Technology 2016, 12, 1-37. http://dx.doi.org/10.18642/jmseat_7100121546
https://doi.org/10.18642/jmseat_7100121546

[11] Komesu, A.; Oliveira, J.A.R.; Martins, L.H.; Wolf Maciel, M.R.; Maciel Filho, R. Lactic Acid Production to Purification: A Review. Bioresources 2017, 12, 4364-4383. https://doi.org/10.15376/biores.12.2.4364-4383
https://doi.org/10.15376/biores.12.2.4364-4383

[12] Vaidya, A.N.; Pandey, R.A.; Mudliar, S.; Kumar, M.S.; Chakrabarty, T.; Devotta, S. Production and Recovery of Lactic Acid for Polylactide-An Overview. Crit. Rev. Environ. Sci. Technol. 2005, 35, 429-467. https://doi.org/10.1080/10643380590966181
https://doi.org/10.1080/10643380590966181

[13] Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent Advances in Lactic Acid Production by Microbial Fermentation Processes. Biotechnol. Adv. 2013, 31, 877-902. https://doi.org/10.1016/j.biotechadv.2013.04.002
https://doi.org/10.1016/j.biotechadv.2013.04.002

[14] Wang, Y.; Tashiro, Y.; Sonomoto, K. Fermentative Production of Lactic Acid from Renewable Materials: Recent Achievements, Prospects, and Limits. J. Biosci. Bioeng. 2015, 119, 10-18. https://doi.org/10.1016/j.jbiosc.2014.06.003
https://doi.org/10.1016/j.jbiosc.2014.06.003

[15] Klotz, S.; Kaufmann, N.; Kuenz, A.; Prüße, U. Biotechnological Production of Enantiomerically Pure D-Lactic Acid. Appl. Microbiol. Biotechnol. 2016, 100, 9423-9437. https://doi.org/10.1007/s00253-016-7843-7
https://doi.org/10.1007/s00253-016-7843-7

[16] Krishna, B.S; Saibaba, N.; Gantala, S.S.N.; Tarun, B.; Gopinadh, R. Industrial Production of Lactic Acid and Its Applications. Int. J. Biotechnol. Res. 2018, 1, 42-54. https://www.researchgate.net/publication/330292057_Industrial_production.... (accessed 2023-11-27).

[17] Wee, Y.-J.; Kim, J.-N.; Ryu, H.-W. Biotechnological Production of Lactic Acid and Its Recent Applications Food Technol. Food Technol. Biotechnol. 2006, 44, 163-172. https://api.semanticscholar.org/CorpusID:28612386 (accessed 2023-11-27)

[18] Bondar, I.V.; Hulyayev, V.M. Promyslova mikrobiolohiya Kharchova i ahrobiotekhnolohiya; DDTU: Dniprodzerzhynsʹk, 2004. [in UKrainian].

[19] Pohanka, M. D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. BioMed Res. Int. [Online] 2020, 2020, 3419034. https://doi.org/10.1155/2020/3419034 Published online: June 18, 2020. https://www.hindawi.com/journals/bmri/2020/3419034/(accessed 2023-11-27)

[20] Gao, T.; Wong, Y.; Ng, C.; Ho, K. L-Lactic Acid Production by Bacillus Subtilis MUR1. Bioresour. Technol. 2012, 121, 105-110. https://doi.org/10.1016/j.biortech.2012.06.108
https://doi.org/10.1016/j.biortech.2012.06.108

[21] Payot, T.; Chemaly, Z.; Fick, M. Lactic Acid Production by Bacillus Coagulans-Kinetic Studies and Optimization of Culture Medium for Batch and Continuous Fermentations. Enzyme Microb. Technol. 1999, 24, 191-199. https://doi.org/10.1016/S0141-0229(98)00098-2
https://doi.org/10.1016/S0141-0229(98)00098-2

[22] Castells, A.; Leon, A.; Sosa, D.; Cadena, I.; Ramírez, D.; Serrano, L.; Larrea, F.; Almeida-Streitwieser, D.; Alvarez-Barreto, J. Evaluation of Lactic Acid Production by Different Bacillus Subtilis Strains Isolated From Theobroma Cacao Crops in Ecuador. Chem. Eng. Trans. 2022, 93, 55-60. https://doi.org/10.3303/CET2293010

[23] Liu, H.; Kang, J.; Qi, Q.; Chen, G. Production of Lactate in Escherichia Coli by Redox Regulation Genetically and Physiologically. Appl. Biochem. Biotechnol. 2011, 164, 162-169. https://doi.org/10.1007/s12010-010-9123-9
https://doi.org/10.1007/s12010-010-9123-9

[24] Chang, D.-E.; Jung, H.-C.; Rhee, J.-S.; Pan, J.-G. Homofermentative Production of D-Orl-Lactate in Metabolically Engineered Escherichia Coli RR1. Appl. Environ. Microbiol. 1999, 65, 1384-1389. https://doi.org/10.1128/AEM.65.4.1384-1389.1999
https://doi.org/10.1128/AEM.65.4.1384-1389.1999

[25] Okino, S.; Suda, M.; Fujikura, K.; Inui, M.; Yukawa, H. Production of D-Lactic Acid by Corynebacterium Glutamicum under Oxygen Deprivation. Appl. Microbiol. Biotechnol. 2008, 78, 449-454. https://doi.org/10.1007/s00253-007-1336-7
https://doi.org/10.1007/s00253-007-1336-7

[26] Björkroth, J.; Koort, J. Lactic Acid Bacteria: Taxonomy and Biodiversity. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier, 2011; pp. 45-48. https://doi.org/10.1016/B978-0-12-374407-4.00255-7
https://doi.org/10.1016/B978-0-12-374407-4.00255-7

[27] Mozzi, F. Lactic Acid Bacteria. In Encyclopedia of Food and Health; Elsevier, 2016; pp. 501-508. https://doi.org/10.1016/b978-0-12-384947-2.00414-1
https://doi.org/10.1016/B978-0-12-384947-2.00414-1

[28] Chervetsova, V. Mikrobiolohiya: konspekt lektsiy; Vydavnytstvo Lʹvivsʹkoyi politekhniky: Lʹviv, 2016 [in Ukrainian].

[29] Abedi, E.; Lactic Acid Production - Producing Microorganisms and Substrates Sources - State of Art. Heliyon 2020, 6, e04974. https://doi.org/10.1016/j.heliyon.2020.e04974
https://doi.org/10.1016/j.heliyon.2020.e04974

[30] UK Standards for Microbiology Investigations Identification of Bacillus Species. Bacteriology - Identification Issued by the Standards Unit, Microbiology Services, PHE, 2014. https://assets.publishing.service.gov.uk/media/5ac4e7cc40f0b60a4e1b0e7a/... (accessed 2023-11-27)

[31] Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The Population Genetics of Commensal Escherichia Coli. Nat. Rev. Microbiol. 2010, 8, 207-217. https://doi.org/10.1038/nrmicro2298
https://doi.org/10.1038/nrmicro2298

[32] Förster, A.H.; Gescher, J. Metabolic Engineering of Escherichia Coli for Production of Mixed-Acid Fermentation End Products. Front. Bioeng. Biotechnol. [Online] 2014, 2, 16. https://doi.org/10.3389/fbioe.2014.00016
https://doi.org/10.3389/fbioe.2014.00016

[33] Wolfe, A.J. The Acetate Switch. Microbiol. Mol. Biol. Rev. 2005, 69, 12-50. https://doi.org/10.1128/mmbr.69.1.12-50.2005
https://doi.org/10.1128/MMBR.69.1.12-50.2005

[34] Gopinath, V.; Nampoothiri, K.M. Corynebacterium glutamicum. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier, 2014; pp. 504-517. https://doi.org/10.1016/B978-0-12-384730-0.00076-8
https://doi.org/10.1016/B978-0-12-384730-0.00076-8

[35] Lee, J.A.; Ahn, J.H.; Lee, S.Y. Organic Acids: Succinic and Malic Acids. In Comprehensive Biotechnology, 3nd ed.; Elsevier, 2019; pp. 172-187. https://doi.org/10.1016/B978-0-444-64046-8.00159-2
https://doi.org/10.1016/B978-0-444-64046-8.00159-2

[36] Inui, M.; Murakami, S.; Okino, S.; Kawaguchi, H.; Vertès, AA; Yukawa, H. Metabolic Analysis of Corynebacterium Glutamicum During Lactate and Succinate Productions Under Oxygen Deprivation Conditions. J. Mol. Microbiol. Biotechnol. 2004, 7, 182-196. https://doi.org/10.1159/000079827
https://doi.org/10.1159/000079827

[37] de la Torre, I.; Ladero, M.; Santos, V.E. D-Lactic Acid Production From Orange Waste Enzymatic Hydrolysates With L. Delbrueckii Cells in Growing and Resting State. Ind. Crops. Prod. 2020, 146, 112176. https://doi.org/10.1016/j.indcrop.2020.112176
https://doi.org/10.1016/j.indcrop.2020.112176

[38] Kotzamanidis, Ch.; Roukas, T.; Skaracis, G.N. Optimization of Lactic Acid Production from Beet Molasses by Lactobacillus Delbrueckii NCIMB 8130. World J. Microbiol. Biotechnol. 2002, 18, 441-448. https://doi.org/10.1023/a:1015523126741.
https://doi.org/10.1023/A:1015523126741

[39] Tian, X.; Liu, X.; Zhang, Y.; Chen, Y.; Hang, H.; Chu, J.; Zhuang, Y. Metabolic Engineering Coupled With Adaptive Evolution Strategies for the Efficient Production of High-Quality L-Lactic Acid by Lactobacillus Paracasei. Bioresour. Technol. 2021, 323, 124549. https://doi.org/10.1016/j.biortech.2020.124549
https://doi.org/10.1016/j.biortech.2020.124549

[40] Li, Z.; Lu, J.; Zhao, L.; Xiao, K.; Tan, T. Improvement of L-Lactic Acid Production under Glucose Feedback Controlled Culture by Lactobacillus Rhamnosus. Appl. Biochem. Biotechnol. 2010, 162, 1762-1767 https://doi.org/10.1007/s12010-010-8957-5
https://doi.org/10.1007/s12010-010-8957-5

[41] Shi, S.; Kang, L.; Lee, Y.Y. Production of Lactic Acid from the Mixture of Softwood Pre-Hydrolysate and Paper Mill Sludge by Simultaneous Saccharification and Fermentation. Appl. Biochem. Biotechnol. 2015, 175, 2741-2754. https://doi.org/10.1007/s12010-014-1451-8
https://doi.org/10.1007/s12010-014-1451-8

[42] Liu, P.; Zheng, Z.; Xu, Q.; Qian, Z.; Liu, J.; Ouyang, J. Valorization of Dairy Waste for Enhanced D-Lactic Acid Production at Low Cost. Process Biochem. 2018, 71, 18-22. https://doi.org/10.1016/j.procbio.2018.05.014 [43] Kim, H. O.; Wee, Y. J.; Kim, J. N.; Yun, J. S.; Ryu, H. W. Production of Lactic Acid From Cheese Whey by Batch and Repeated Batch Cultures of Lactobacillus Sp. RKY2. Appl. Biochem. Biotechnol. 2006, 131, 694-704. https://doi.org/10.1385/ABAB:131:1:694
https://doi.org/10.1385/ABAB:131:1:694

[44] Büyükkileci, A.O.; Harsa, S. Batch Production of L(+) Lactic Acid From Whey by Lactobacillus Casei(NRRL B-441). J. Chem. Technol. Biotechnol. 2004, 79, 1036-1040. https://doi.org/10.1002/jctb.1094
https://doi.org/10.1002/jctb.1094

[45] de Oliveira, J.; Porto de Souza Vandenberghe, L.; Zwiercheczewski de Oliveira, P.; Murawski de Mello, A. F.; Rodrigues, C.; Singh Nigam, P.; Faraco, V.; Soccol, C.R. Bioconversion of Potato-Processing Wastes Into an Industrially-Important Chemical Lactic Acid. Bioresour. Technol. Rep. 2021, 15, 100698. https://doi.org/10.1016/j.biteb.2021.100698
https://doi.org/10.1016/j.biteb.2021.100698

[46] Shi, Z.; Wei, P.; Zhu, X.; Cai, J.; Huang, L.; Xu, Z. Efficient Production of L-Lactic Acid From Hydrolysate of Jerusalem Artichoke With Immobilized Cells of Lactococcus Lactis in Fibrous Bed Bioreactors. Enzyme Microb. Technol. 2012, 51, 263-268. https://doi.org/10.1016/j.enzmictec.2012.07.007
https://doi.org/10.1016/j.enzmictec.2012.07.007

[47] Oh, H.; Wee, Y.-J.; Yun, J.-S.; Ryu, H.-W. Lactic Acid Production through Cell-Recycle Repeated-Batch Bioreactor. Appl. Biochem. Biotechnol. 2003, 107, 603-614. https://doi.org/10.1385/ABAB:107:1-3:603
https://doi.org/10.1385/ABAB:107:1-3:603

[48] Wee, Y.-J.; Kim, J.-N.; Yun, J.-S.; Ryu, H.-W. Utilization of Sugar Molasses for Economical L(+)-Lactic Acid Production by Batch Fermentation of Enterococcus Faecalis. Enzyme Microb. Technol. 2004, 35, 568-573. https://doi.org/10.1016/j.enzmictec.2004.08.008
https://doi.org/10.1016/j.enzmictec.2004.08.008

[49] Cox, R.; Narisetty, V.; Nagarajan, S.; Agrawal, D.; Ranade, V.V.; Salonitis, K.; Venus, J.; Kumar, V. High-Level Fermentative Production of Lactic Acid From Bread Waste Under Non-Sterile Conditions With a Circular Biorefining Approach and Zero Waste Discharge. Fuel 2022, 313, 122976. https://doi.org/10.1016/j.fuel.2021.122976
https://doi.org/10.1016/j.fuel.2021.122976

[50] Xu, K.; Xu, P. Efficient Production of L-Lactic Acid Using Co-Feeding Strategy Based on Cane Molasses/Glucose Carbon Sources. Bioresour. Technol. 2014, 153, 23-29. https://doi.org/10.1016/j.biortech.2013.11.057
https://doi.org/10.1016/j.biortech.2013.11.057

[51] Budhavaram, N.K.; Fan, Z. Production of Lactic Acid from Paper Sludge Using Acid-Tolerant, Thermophilic Bacillus Coagulan Strains. Bioresour. Technol. 2009, 100, 5966-5972. https://doi.org/10.1016/j.biortech.2009.01.080
https://doi.org/10.1016/j.biortech.2009.01.080

[52] Ye, L.; Zhou, X.; Hudari, M.S.B.; Li, Z.; Wu, J.C. Highly Efficient Production of L-Lactic Acid From Xylose by Newly Isolated Bacillus Coagulans C106. Bioresour. Technol. 2013, 132, 38-44. https://doi.org/10.1016/j.biortech.2013.01.011
https://doi.org/10.1016/j.biortech.2013.01.011

[53] Meng, Y.; Xue, Y.; Yu, B.; Gao, C.; Ma, Y. Efficient Production of L-Lactic Acid With High Optical Purity by Alkaliphilic Bacillus Sp. WL-S20. Bioresour. Technol. 2012, 116, 334-339. https://doi.org/10.1016/j.biortech.2012.03.103
https://doi.org/10.1016/j.biortech.2012.03.103

[54] Tian, K.; Chen, X.; Shen, W.; Prior, B.A.; Shi G.; Singh S.; Wang Z. High-Efficiency Conversion of Glycerol to D-Lactic Acid with Metabolically Engineered Escherichia Coli. Afr. J. Biotechnol. 2012, 11, 4860-4867. https://doi.org/10.5897/ajb11.3464
https://doi.org/10.5897/AJB11.3464

[55] Wang, Y.; Li, K.; Huang, F.; Wang, J.; Zhao, J.; Zhao, X.; Garza, E.; Manow, R.; Grayburn, S.; Zhou, S. Engineering and Adaptive Evolution of Escherichia Coli W for L-Lactic Acid Fermentation From Molasses and Corn Steep Liquor Without Additional Nutrients. Bioresour. Technol. 2013, 148, 394-400. https://doi.org/10.1016/j.biortech.2013.08.114
https://doi.org/10.1016/j.biortech.2013.08.114

[56] Liu, Y.; Gao, W.; Zhao, X.; Wang, J.; Garza, E.; Manow, R.; Zhou, S. Pilot Scale Demonstration of D -Lactic Acid Fermentation Facilitated by Ca(OH)2 Using a Metabolically Engineered Escherichia Coli. Bioresour. Technol. 2014, 169, 559-565. https://doi.org/10.1016/j.biortech.2014.06.056
https://doi.org/10.1016/j.biortech.2014.06.056

[57] Wang, Y.; Meng, H.; Cai, D.; Wang, B.; Qin, P.; Wang, Z.; Tan, T. Improvement of L-Lactic Acid Productivity From Sweet Sorghum Juice by Repeated Batch Fermentation Coupled With Membrane Separation. Bioresour. Technol. 2016, 211, 291-297. https://doi.org/10.1016/j.biortech.2016.03.095
https://doi.org/10.1016/j.biortech.2016.03.095

[58] Liang, S.; McDonald, A.G.; Coats, E.R. Lactic Acid Production From Potato Peel Waste by Anaerobic Sequencing Batch Fermentation Using Undefined Mixed Culture. Waste Manage. 2015, 45, 51-56. https://doi.org/10.1016/j.wasman.2015.02.004
https://doi.org/10.1016/j.wasman.2015.02.004

[59] Lian, T.; Zhang, W.; Cao, Q.; Wang, S.; Dong, H. Enhanced Lactic Acid Production from the Anaerobic Co-Digestion of Swine Manure with Apple or Potato Waste via Ratio Adjustment. Bioresour. Technol. 2020, 318, 124237. https://doi.org/10.1016/j.biortech.2020.124237
https://doi.org/10.1016/j.biortech.2020.124237

[60] Xiaodong, W.; Xuan, G.; Rakshit, S.K. Direct Fermentative Production of Lactic Acid on Cassava and Other Starch Substrates. Biotechnol. Lett. 1997, 19, 841-843. https://doi.org/10.1023/A:1018321200591
https://doi.org/10.1023/A:1018321200591

[61] Reddy, G.; Altaf, Md.; Naveena, B.J.; Venkateshwar, M.; Kumar, E.V. Amylolytic Bacterial Lactic Acid Fermentation - a Review. Biotechnol. Adv. 2008, 26, 22-34. https://doi.org/10.1016/j.biotechadv.2007.07.004
https://doi.org/10.1016/j.biotechadv.2007.07.004

[62] Kerketta, A.; Panda, T.C.; Ray, R.C.; Behera, S.S. Amylolytic Lactic Acid Bacteria: Cell Factories for Direct Lactic Acid Production from Biomass by Simultaneous Saccharification and Fermentation. In Lactic Acid Bacteria as Cell Factories; Elsevier, 2023; pp. 199-217. https://doi.org/10.1016/B978-0-323-91930-2.00003-1
https://doi.org/10.1016/B978-0-323-91930-2.00003-1

[63] Cui, F.; Li, Y.; Wan, C. Lactic Acid Production From Corn Stover Using Mixed Cultures of Lactobacillus Rhamnosus and Lactobacillus Brevis. Bioresour. Technol. 2011, 102, 1831-1836. https://doi.org/10.1016/j.biortech.2010.09.063
https://doi.org/10.1016/j.biortech.2010.09.063

[64] Bai, Z.; Gao, Z.; Sun, J.; Wu, B.; He, B. D-Lactic Acid Production by Sporolactobacillus Inulinus YBS1-5 With Simultaneous Utilization of Cottonseed Meal and Corncob Residue. Bioresour. Technol. 2016, 207, 346-352. https://doi.org/10.1016/j.biortech.2016.02.007
https://doi.org/10.1016/j.biortech.2016.02.007

[65] John, R.P.; Nampoothiri, K.M.; Pandey, A. Simultaneous Saccharification and Fermentation of Cassava Bagasse for L-(+)-Lactic Acid Production Using Lactobacilli. Appl. Biochem. Biotechnol. 2006, 134, 263-272. https://doi.org/10.1385/ABAB:134:3:263
https://doi.org/10.1385/ABAB:134:3:263

[66] Sreenath, H.K.; Moldes, A.B.; Koegel, R.G.; Straub, R.J. Lactic Acid Production from Agricultural Residues. Biotechnol. Lett. 2001, 23, 179-184. https://doi.org/10.1023/A:1005651117831
https://doi.org/10.1023/A:1005651117831

[67] Moldes, A.B.; Alonso, J.L.; Parajó, J.C. Strategies to Improve the Bioconversion of Processed Wood into Lactic Acid by Simultaneous Saccharification and Fermentation. J. Chem. Technol. Biotechnol. 2001, 76, 279-284. https://doi.org/10.1002/jctb.381
https://doi.org/10.1002/jctb.381

[68] Wee, Y.J.; Yun, J.S.; Kim, D.; Ryu, H.W. Batch and Repeated Batch Production of L(+)-Lactic Acid by Enterococcus Faecalis RKY1 Using Wood Hydrolyzate and Corn Steep Liquor. J. Ind. Microbiol. Biotechnol. 2006, 33, 431-435. https://doi.org/10.1007/s10295-006-0084-5
https://doi.org/10.1007/s10295-006-0084-5

[69] Panesar, P.; Kennedy, J.; Gandhi, D.; Bunko, K. Bioutilization of Whey for Lactic Acid Production. Food Chem. 2007, 105, 1-14. https://doi.org/10.1016/j.foodchem.2007.03.035
https://doi.org/10.1016/j.foodchem.2007.03.035

[70] Dumbrepatil, A.; Adsul, M.; Chaudhary, S.; Khire, J.; Gokhale, D. Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus Delbrueckii Subsp. Delbrueckii Mutant Uc-3 in Batch Fermentation. Appl. Environ. Microbiol. 2007, 74, 333-335. https://doi.org/10.1128/aem.01595-07
https://doi.org/10.1128/AEM.01595-07

[71] Mladenović, D.; Pejin, J.; Kocić-Tanackov, S.; Radovanović, Ž.; Djukić-Vuković, A.; Mojović, L. Lactic Acid Production on Molasses Enriched Potato Stillage by Lactobacillus Paracasei Immobilized Onto Agro-Industrial Waste Supports. Ind. Crop. Prod. 2018, 124, 142-148. https://doi.org/10.1016/j.indcrop.2018.07.081
https://doi.org/10.1016/j.indcrop.2018.07.081

[72] Alonso, S.; Herrero, M.; Rendueles, M.; Díaz, M. Residual Yoghurt Whey for Lactic Acid Production. Biomass Bioenergy 2010, 34, 931-938. https://doi.org/10.1016/j.biombioe.2010.01.041
https://doi.org/10.1016/j.biombioe.2010.01.041

[73] Song, L.; Yang, D.; Liu, R.; Liu, S.; Dai, L.; Dai, X. Microbial Production of Lactic Acid From Food Waste: Latest Advances, Limits, and Perspectives. Bioresour. Technol. 2021, 126052. https://doi.org/10.1016/j.biortech.2021.126052
https://doi.org/10.1016/j.biortech.2021.126052