Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth

Angelica Macalalad1, Quennie Rose Ebete1, Dominic Gutierrez1, Madelaine Ramos1, Bryan John Magoling1
1 Chemistry Department, College of Arts and Sciences, Batangas State University, Batangas City, Philippines
PDF icon full_text.pdf488.83 KB
The present study is focused on the use of activated carbon derived from water hyacinth (WH-AC) as adsorbent for the removal of Cr(VI) from aqueous solution. The optimized WH-AC was found to be mesoporous and considered as granular. The surface area of 11.564 m2/g was found to have a good adsorption capacity. The adsorption data of the optimized WH-AC followed a pseudo-second order kinetics and the Freundlich isotherm model. Based on the correlation coefficient obtained from pseudo-second-order kinetic model, the R2 values were all above 0.99, which is closer to unity of one (1) indicating that it followed a chemisorption process. The adsorption capacity of WH-AC increased from 1.98 to 4.68 mg/g when adsorbate concentration increased from 20 to 50 mg/l. The overall study proved that the adsorption by activated carbon derived from water hyacinth can be an alternative and efficient technique in hexavalent chromium removal.

[2] Kakavandi, B., Kalantary, R. R., Farzadkia, M. et al.: J. Environ. Health Sci., 2014, 12, 115.
[3] Rai M., Shahi G., Meena V. et al.: Resour. Efficient Technol., 2016, 2, S63.
[4] Alslaibi T., Abustan I., Ahmad M., Foul A.: J. Environ. Chem. Eng., 2013, 1, 589.
[5] Langmuir I.: J. Am. Chem. Soc., 1916, 38, 2221.
[6] Freundlich H.: J. Phys. Chem., 1906, 57, 385.
[7] Alslaibi T., Abustan I., Ahmad M., Foul A.: Desalin. Water Treat., 2015, 54, 166.
[8] Lagergren S.: Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24, 1.
[9] Hesas R., Arami-Niya A., Daud W., Sahu J.: BioResources, 2013, 8, 2950.
[10] Ţucureanu V., Matei A., Avram A.: Crit. Rev. Anal. Chem., 2016, 46, 502,
[11] Lafi R., Montasser I., Hafiane A.: Adsorpt. Sci. Technol.: 2018, 37, 160.
[12] Silverstein R., Webster F., Kiemle D. et al.: Spectrometric Identification of Organic Compounds. 8 edn. Wiley 2014.
[13] Anisuzzaman S., Joseph C., Daud W. et al.: Int. J. Ind. Chem., 2015, 6, 9.
[14] Magoling B., Macalalad A.: BioResources, 2017, 12, 3001.
[15] Yang J., Yu M., Chen W.: J. Ind. Eng. Chem., 2015, 21, 414.
[16] Wanees S., Ahmed A., Adam M., Mohamed M.: Asian J. Chem., 2013, 25, 8245.
[17] Bhanvase B., Ugwekar R. (Eds.): Process Modeling, Simulation, and Environmental Applications in Chemical Engineering, Apple Academic Press, New York 2016.
[18] Cruz G., Pirilä M., Huuhtanen M. et al.: J. Civil. Environ. Eng., 2012, 2, 109.
[19] Dubinin M.: Carbon, 1985, 23, 373.
[20] National Research Council. Drinking Water and Health, vol. 2. The National Academies Press, Washington 1983.
[21] Patil S., Natarajan G., Bhole A.: Indian J. Environ. Health, 2006, 48, 203.
[22] Kang Y., Toh S., Monash P. et al.: Asia-Pac. J. Chem. Eng., 2013, 8, 811.
[23] Tan G., Xiao D.: J. Hazard. Mater., 2009, 164, 1359.
[24] Dula T., Siraj K., Kitte S.: Int. Scholarly Res. Notice., 2014, 2014.
[25] Ho Y., Mckay G.: Process Biochem., 1999, 34, 451.