Kinetic Model for Dissolution of Cement Copper in Sulfuric Acid Solutions Containing Cupric Ions

Nizamettin Demirkıran1, G. Deniz Turhan Özdemir1
Affiliation: 
Department of Chemical Engineering, Faculty of Engineering, Inonu University, Malatya, 44280, Turkey nizamettin.demirkiran@inonu.edu.tr
DOI: 
https://doi.org/10.23939/chcht15.03.395
AttachmentSize
PDF icon full_text.pdf975.26 KB
Abstract: 
In this paper, the dissolution kinetics of cement copper powder in sulfuric acid solutions containing cupric ions was examined. It was observed that the dissolution rate of copper increased with increasing the acid concentration, temperature, and stirring speed. It was determined that the dissolution rate of copper enhanced with increasing the cupric ion concentration up to 0.025 M. It was found that the temperature and concentration of cupric ion had more considerable effects on the dissolution of copper powder. The kinetic analysis of the process was performed, and it was observed that it fits the first order pseudo-homogenous reaction model. The activation energy was calculated to be 31.1 kJ/mol.
References: 

[1] Venkatachalam S.: Hydrometallurgy. Narosa Publishing House, Delhi, India 1998.

[2] Noubactep C.: J. Hazard. Mater., 2010, 81, 1170. https://doi.org/10.1016/j.jhazmat.2010.05.085
https://doi.org/10.1016/j.jhazmat.2010.05.085

[3] Demirkıran N.: Rev. Chim., 2013, 64, 378.

[4] Shishkin A., Mironovs V., Vu H. et al.: Metals, 2018, 8, 920. https://doi.org/10.3390/met8110920
https://doi.org/10.3390/met8110920

[5] Habashi F.: Handbook of Extractive Metallurgy. Wiley, New York 1997.

[6] Karavasteva M.: Hydrometallurgy, 2005, 76, 149. https://doi.org/10.1016/j.hydromet.2004.10.003
https://doi.org/10.1016/j.hydromet.2004.10.003

[7] Gana R., Figueroa M., Sanchez J.M., Esteso M.: J. Appl. Electrochem., 1995, 25, 240. https://doi.org/10.1007/BF00262962
https://doi.org/10.1007/BF00262962

[8] Figueroa M., Gana R., Kattan L. et al.: J. Appl. Electrochem., 1997, 27, 99. https://doi.org/10.1023/A:10264792

[9] Ekmekyapar A., Demirkıran N., Künkül A. et al.: Braz. J. Chem. Eng., 2015, 32, 155. https://doi.org/10.1590/0104-6632.20150321s00003211
https://doi.org/10.1590/0104-6632.20150321s00003211

[10] Tanaydın M., Demirkıran N.: Sep. Sci. Technol., 2019, 54, 815. https://doi.org/10.1080/01496395.2018.1512619
https://doi.org/10.1080/01496395.2018.1512619

[11] Demirkıran N.: Ind. Eng. Chem. Res., 2013, 52, 8157. https://doi.org/10.1021/ie400438b
https://doi.org/10.1021/ie400438b

[12] Wong D., Coller B., Macfarlane D.: Electrochim. Acta, 1993, 38, 2121. https://doi.org/10.1016/0013-4686(93)80350-9
https://doi.org/10.1016/0013-4686(93)80350-9

[13] Grishina E., Udalova A., Rumyantsev E.: Russ. J. Electrochem., 2002, 38, 155. https://doi.org/10.1016/0013-4686(93)80350-9
https://doi.org/10.1016/0013-4686(93)80350-9

[14] Sribnyi V., Kuntyi O., Yavors'kyi V.: Mater. Sci., 2001, 37, 524. https://doi.org/10.1023/A:10132266

[15] Sameh S., Salih I., Alwash S., Al-Waisty A.: Eng. Technol. J., 2009, 27, 993.

[16] Baeshov A., Kadirbayua A., Jurinov M.: Int. J. Chem. Sci., 2014, 12, 1009.

[17] Park I., Yoo K., Alorro R. et al.: Mater. Trans., 2017, 58, 1500. https://doi.org/10.2320/matertrans.M2017147
https://doi.org/10.2320/matertrans.M2017147

[18] Khalid M., Hamuyuni J., Agarwal V. et al.: J. Clean. Prod., 2019, 215, 1005. https://doi.org/10.1016/j.jclepro.2019.01.083
https://doi.org/10.1016/j.jclepro.2019.01.083

[19] Castillo J., Sepúlveda R., Araya G. et al.: Minerals, 2019, 9, 319. https://doi.org/10.3390/min9050319
https://doi.org/10.3390/min9050319

[20] Koyama K., Tanaka M., Lee J.: Mater.Trans., 2006, 47, 1788. https://doi.org/10.2320/matertrans.47.1788
https://doi.org/10.2320/matertrans.47.1788

[21] Read A.: J. Phys. Chem., 1972, 76, 3656. https://doi.org/10.1021/j100668a026
https://doi.org/10.1021/j100668a026

[22] Wen C.: Ind. Eng. Chem.,1968, 60, 34. https://doi.org/10.1021/ie50705a007
https://doi.org/10.1021/ie50705a007

[23] Levenspiel O.: Chemical Reaction Engineering. John Wiley, New York 1972.

[24] Mazet N.: Int. Chem. Eng., 1992, 32, 271.

[25] Lambert F., Gaydardzhiev S., Léonard G. et al.: Miner. Eng., 2015, 76, 38. https://doi.org/10.1016/j.mineng.2014.12.029
https://doi.org/10.1016/j.mineng.2014.12.029