Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Investigation of Hybrid Organic-Inorganic Dihydrogen Phosphate by Hirshfeld Surface Analysis and Quantum Chemical Analysis

Abdellatif Rafik1, Hafid Zouihri2, Taoufiq Guedira1
Affiliation: 
1 Laboratory of Organic Chemistry, Catalysis and Environment Laboratory, Faculty of Sciences, Ibn Tofail University, B.P. 133, 14000 Kenitra, Morocco 2 Laboratory of Chemistry of Materials and Biotechnology of Natural Products, University Moulay Ismail, Faculty of Sciences, Meknes, Morocco abdellatif.rafik@uit.ac.ma
DOI: 
https://doi.org/10.23939/chcht17.02.244
AttachmentSize
PDF icon full_text.pdf912.99 KB
Abstract: 
This present work undertakes the study of organic-inorganic hybrid material, which has been obtained successfully by an acid-base reaction at room tem-perature and structurally studied by the single crystal X-ray diffraction method. N-(Dicyclopropylmethylamino)-4,5-dihydro-1,3-oxazolium dihydrogenphosphate [10-CN@DP] crystallizes in the triclinic system with the space group P-1. The X-ray structural analysis supported by a Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H…H (63.3%), H…O/O…H (32.2%) and H…C/C…H (2.5%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure. Using the same level of theory to imagine the chemical reactivity and charge distribution on the molecule, used to determine the HOMO-LUMO energy gap and density of state (DOS) range, the molecular electrostatic potential (MEP) image was drawn. Keywords: HOMO–LUMO, density of state, Hirshfeld surface analysis, electrostatic potential surface.
References: 

[1] Guloy, A.M.; Tang, Z.J.; Miranda, P.B.; Srdanov, V.I. A New Luminescent Organic-Inorganic Hybrid Compound with Large Optical Nonlinearity. Adv. Mater. 2001, 13, 833-837. https://doi.org/10.1002/1521-4095(200106)13:11%3C833::AID-ADMA833%3E3.0.CO;2-T
https://doi.org/10.1002/1521-4095(200106)13:11<833::AID-ADMA833>3.0.CO;2-T

[2] Chang, H.-Y.; Kim, S.-H.; Halasyamani, P.S.; Ok, K.M. Align-ment of Lone Pairs in a New Polar Material: Synthesis, Characteri-zation, and Functional Properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 2009, 131, 2426-2427.
https://doi.org/10.1021/ja808469a

https://doi.org/10.1021/ja808469a
https://doi.org/10.1021/ja808469a

[3] Chang, H.-Y.; Kim, S.-H.; Ok, K.M.; Halasyamani, P.S. New Polar Oxides: Synthesis, Characterization, Calculations, and Struc-ture−Property Relationships in RbSe2V3O12 and TlSe2V3O12. Chem. Mater. 2009, 21, 1654-1662.
https://doi.org/10.1021/cm9002614

https://doi.org/10.1021/cm9002614
https://doi.org/10.1021/cm9002614

[4] Abu El-Fadl, A.; Gaffar, M.A.; Omar, M.H. Electrical Conduc-tivity and Pyroelectricity of Lithium-Potassium Sulphate Single Crystal in the Temperature Range 300-950 K. Physica B Condens. Matter 1999, 269, 395-402. https://doi.org/10.1016/S0921-4526(99)00116-7
https://doi.org/10.1016/S0921-4526(99)00116-7

[5] Horiuchi, S.; Tokunaga, Y.; Giovannetti, G.; Picozzi, S.; Itoh, H.; Shimano, R.; Kumai, R.; Tokura, Y. Above-room-temperature Ferroelectricity in a Single-Component Molecular Crystal. Nature 2010, 463,789-792. https://doi.org/10.1038/nature08731
https://doi.org/10.1038/nature08731

[6] Mishurov, D.; Voronkin, A.; Roshal, A.; Bogatyrenko, S.; Vashchenko, O. Synthesis and Characterization of Dye-Doped Polymer Films for Non-linear Optical Applications. Chem. Chem. Technol. 2019, 13, 459-464. https://doi.org/10.23939/chcht13.04.459
https://doi.org/10.23939/chcht13.04.459

[7] Hearn, R.A.; Bugg, C.E. The crystal Structure of (-)-Ephedrine Dihydrogen Phosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1972, B28, 3662-3667. https://doi.org/10.1107/S0567740872008532
https://doi.org/10.1107/S0567740872008532

[8] Adams, J.M. The Crystal Structure of Aminoguanidinium Dihydrogen Orthophosphate. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 1977, B33, 1513-1515. https://doi.org/10.1107/S0567740877006402
https://doi.org/10.1107/S0567740877006402

[9] Rafik, A.; Zouihri, H.; Guedira, T. Analysis of H-Bonding Interactions with Hirshfeld Surfaces and Geometry-Optimized Structure of the DL-Valinium Dihydrogen Phosphate. J. Chem. Technol. Metall. 2021, 56, 275-282.

[10] Blessing, R.H. Hydrogen Bonding and Thermal Vibrations in Crystalline Phosphate Salts of Histidine and Imidazole. Acta. Crys-tallogr. B. Struct. Sci. Cryst. Eng. Mater. 1986, B42, 613-621. https://doi.org/10.1107/S0108768186097641
https://doi.org/10.1107/S0108768186097641

[11] Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 3.0; University of Western Australia, Perth, 2012.

[12] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. et al. Gaussian; Inc., Wallingford CT, 2016.

[13] Dennington, R. II; Keith, T.; Millam, J. GaussView, Version 4.1. 2, Semichem Inc Shawnee Mission KS, 2007.

[14] Guelmami, L.; Gharbi, A.; Jouini, A. 4-Dimethylaminopyridinium dihydrogenmonophosphate (C7H11N2)H2PO4: Synthesis, Structural, 31P, 13C NMR and Thermal Investigations. J. Chem. Crystallogr. 2012, 42, 549-554. https://doi.org/10.1007/s10870-012-0277-x
https://doi.org/10.1007/s10870-012-0277-x

[15] Marchewka, M. K.; Drozd, M.; Janczak, Ja. Crystal and Mole-cular Structure of n-(4-Nitrophenyl)-β-alanine-Its Vibrational Spectra and Theoretical Calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 758-766. https://doi.org/10.1016/j.saa.2010.08.050
https://doi.org/10.1016/j.saa.2010.08.050

[16] Breda, S.; Reva, I.D.; Lapinski, L.; Nowak, M.J.; Fausto, R. Infrared Spectra of Pyrazine, Pyrimidine and Pyridazine in Solid Argon. J. Mol. Struct. 2006, 786, 193-206. https://doi.org/10.1016/j.molstruc.2005.09.010
https://doi.org/10.1016/j.molstruc.2005.09.010

[17] Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and Characterisation of Voids in Crystalline Materials. CrystEngComm 2011, 13, 1804-1813. https://doi.org/10.1039/C0CE00683A
https://doi.org/10.1039/C0CE00683A

[18] Santhy, K.R.; Sweetlin, M.D.; Muthu, S.; Kuruvilla, T.K.; Abraham, C.S. Structure, Spectroscopic study and DFT Calculations of 2,6 bis (tri fluro methyl) benzoic acid. J. Mol. Struct. 2019, 1177, 401-417. https://doi.org/10.1016/j.molstruc.2018.09.058
https://doi.org/10.1016/j.molstruc.2018.09.058

[19] Chethan Prathap, K.N.; Lokanath, N.K. Three Novel Couma-rin-Benzenesulfonylhydrazide Hybrids: Synthesis, Characterization, Crystal Structure, Hirshfeld Surface, DFT and NBO Studies. J. Mol. Struct. 2018, 1171, 564-577. https://doi.org/10.1016/j.molstruc.2018.06.022
https://doi.org/10.1016/j.molstruc.2018.06.022

[20] Mulliken, R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588
https://doi.org/10.1063/1.1740588

[21] Nataraj, A.; Balachandran, V.; Karthick, T. Molecular Orbital Studies (Hardness, Chemical Potential, Electrophilicity, and First Electron Excitation), Vibrational Investigation and Theoretical NBO Analysis of 2-Hydroxy-5-bromobenzaldehyde by Density Functional Method. J. Mol. Struct. 2013, 1031, 221-233. https://doi.org/10.1016/j.molstruc.2012.09.047
https://doi.org/10.1016/j.molstruc.2012.09.047

[22] Onitsch, E.M. Uber die Mikroharte der Metalle. Mikroskopie 1947, 2, 131.

[23] Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V.G.; Benial, A.M.F. DFT Calculation and Vibrational Spectroscopic Studies of 2-(Tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 74-83. https://doi.org/10.1016/j.saa.2014.02.147
https://doi.org/10.1016/j.saa.2014.02.147

[24] Mathammal, R.; Sudha, N.; Prasad, L.G.; Ganga, N.; Krishna-kumar, V. Spectroscopic (FTIR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of 2-Benzylpyridine based on quantum chemical calculations. Spectro-chim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 740-748. https://doi.org/10.1016/j.saa.2014.08.099
https://doi.org/10.1016/j.saa.2014.08.099

[25] Uzun, S.; Esen, Z.; Koç, E.; Usta, N.C.; Ceylan, M. Experimental and Density Functional Theory (MEP, FMO, NLO, Fukui Functions) and Antibacterial Activity Studies on 2-Amino-4- (4-nitrophenyl) -5,6-dihydrobenzo [h] quinoline-3-carbonitrile. J. Mol. Struct. 2019, 1178, 450-457. http://dx.doi.org/10.1016/j.molstruc.2018.10.001
https://doi.org/10.1016/j.molstruc.2018.10.001

[26] Attar, T.; Messaoudi, B.; Benhadria, N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol. 2020, 14, 20-25. https://doi.org/10.23939/chcht14.01.020
https://doi.org/10.23939/chcht14.01.020

[27] Kaya, S.; Tüzün, B.; Kaya, C.; Obot, I.B. Determination of Corrosion Inhibition Effects of Amino Acids: Quantum Chemical and Molecular Dynamic Simulation Study. J. Taiwan Inst. Chem. Eng. 2016, 58, 528-535. https://doi.org/10.1016/j.jtice.2015.06.009
https://doi.org/10.1016/j.jtice.2015.06.009

[28] Lanez, E.; Bechki, L.; Lanez, T. Ferrocenylmethylnucleobases: Synthesis, DFT Calculations, Electrochemical and Spectroscopic Characterization. Chem. Chem. Technol. 2020, 14, 146-153. https://doi.org/10.23939/chcht14.02.146
https://doi.org/10.23939/chcht14.02.146

[29] Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
https://doi.org/10.1021/ja983494x

[30] Pandey, M.; Muthu, S.; Nanje Gowda, N.M. Quantum Mechanical and Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) Studies, NBO, NLO, HOMO, LUMO and Fukui Function Analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT Studies. J. Mol. Struct. 2017, 1130, 511-521. https://doi.org/10.1016/j.molstruc.2016.10.064
https://doi.org/10.1016/j.molstruc.2016.10.064

[31] Gumus, S.; Sundius, T.; Yilmaz, V. Vibrational Analyses of 1,3-Dibenzoyl-4,5-dihydro-1H-imidazole-2-thione and 1,3-Dibenzoyl tetrahydropyrimidine-2(1H)-thione by Normal Coordi-nate Treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 98, 384-395. https://doi.org/10.1016/j.saa.2012.08.058
https://doi.org/10.1016/j.saa.2012.08.058