Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Hydrogels Based on Natural Polymers for Cardiac Applications

Zuzanna Cemka1, Paweł Szarlej1, Edyta Piłat1, Przemysław Gnatowski1, Maciej Sienkiewicz1, Justyna Kucińska-Lipka1
Affiliation: 
1 Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland s165852@student.pg.edu.pl
DOI: 
https://doi.org/10.23939/chcht16.04.564
AttachmentSize
PDF icon full_text.pdf923.52 KB
Abstract: 
In this work agar- and borax-based hydrogels with and without the addition of poly(vinyl alcohol) (PVA) at different concentrations were synthesized. Hydrogels were modified by the same amount of acetylsalicylic acid (ASA) which exhibits antithrombotic properties. The effect of modification by ASA on the properties of hydrogels was analyzed.
References: 

[1] Cui, Z.; Yang, B.; Li, R.-K. Application of Biomaterials in Cardiac Repair and Regeneration. Engineering 2016, 2(1), 141-148. https://doi.org/10.1016/J.ENG.2016.01.028
https://doi.org/10.1016/J.ENG.2016.01.028

[2] Piesowicz, E.; Irska, I.; Bryll, K.; Gawdzinska, K.; Bratychak, M. Poly(Butylene Terephthalate/Carbon Nanotubes Nanocomposites. Part II. Structure and Properties. Polimery 2016, 61(1), 24-30. https://doi.org/10.14314/polimery.2016.024
https://doi.org/10.14314/polimery.2016.024

[3] Li, Y.; Rodrigues, J.; Tomás, H. Injectable and Biodegradable Hydrogels: Gelation, Biodegradation and Biomedical Applications. Chem. Soc. Rev. 2012, 41(6), 2193-2221. https://doi.org/10.1039/C1CS15203C
https://doi.org/10.1039/C1CS15203C

[4] Lam, M.T.; Wu, J.C. Biomaterial Applications in Cardiovascular Tissue Repair and Regeneration. Expert Rev. Cardiovasc. Ther. 2012, 10(8), 1039-1049. https://doi.org/10.1586/erc.12.99
https://doi.org/10.1586/erc.12.99

[5] Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4(4), 297-304. https://doi.org/10.23939/chcht04.04.297
https://doi.org/10.23939/chcht04.04.297

[6] Chyzy, A.; Pawelski, D.; Vivcharenko, V.; Przekora, A.; Bratychak, M.; Astakhova, O.; Breczko, J.; Drozdzal, P.; Plonska-Brzezinska M.E. Microwave-Assisted Synthesis of Modified Glycidyl Methacrylate-Ethyl Methacrylate Oligomers, Their Physico-Chemical and Biological Characteristics. Molecules 2022, 27, 337. https://doi.org/10.3390/molecules27020337
https://doi.org/10.3390/molecules27020337

[7] Solomko, N.; Budishevska, O.; Voronov, S. Peroxide Chitosan Derivatives and Their Application. Chem. Chem. Technol. 2007, 1(3), 137-147. https://doi.org/10.23939/chcht01.03.137
https://doi.org/10.23939/chcht01.03.137

[8] Guelcher, S.A.; Gallagher, K.M.; Didier, J.E.; Klinedinst, D.B.; Doctor, J.S.; Goldstein, A.S.; Wilkes, G.L.; Beckman, E.J.; Hollinger, J.O. Synthesis of Biocompatible Segmented Polyurethanes from Aliphatic Diisocyanates and Diurea Diol Chain Extenders. Acta Biomater. 2005, 1(4), 471-484. https://doi.org/10.1016/j.actbio.2005.02.007
https://doi.org/10.1016/j.actbio.2005.02.007

[9] Zubyk, H.; Mykhailiv, O.; Papathanassiou, A. N.; Sulikowski, B.; Zambrzycka-Szelewa, E.; Bratychak, M.; Plonska-Brzezinska, M.E. A Phenol-Formaldehyde Polymeric Network to Generate Organic Aerogels: Synthesis, Physicochemical Characteristics and Potential Applications. J. Mater. Chem. A 2018, 6(3), 845-852. https://doi.org/10.1039/C7TA08814K
https://doi.org/10.1039/C7TA08814K

[10] Borowska, M.; Glinka, M.; Filipowicz, N.; Terebieniec, A.; Szarlej, P.; Kot-Wasik, A.; Kucińska-Lipka, J. Polymer Biodegradable Coatings as Active Substance Release Systems for Urological Applications. Monatsh. Chem. 2019, 150(9), 1697-1702. https://doi.org/10.1007/s00706-019-02474-8
https://doi.org/10.1007/s00706-019-02474-8

[11] Silvetti, M.S.; Drago, F.; Rava, L. Long-Term Outcome of Transvenous Bipolar Atrial Leads Implanted in Children and Young Adults with Congenital Heart Disease. Europace 2012, 14(7), 1002-1007. https://doi.org/10.1093/europace/eus024
https://doi.org/10.1093/europace/eus024

[12] Przybytek, A.; Gubańska, I.; Kucińska-Lipka, J.; Janik, H. Polyurethanes as a Potential Medical-Grade Filament for Use in Fused Deposition Modeling 3d Printers - A Brief Review. Fibres Text. East. Eur. 2018, 26(6), 120-125. https://doi.org/10.5604/01.3001.0012.5168
https://doi.org/10.5604/01.3001.0012.5168

[13] Szarlej, P.; Carayon, I.; Gnatowski, P.; Glinka, M.; Mroczyńska, M.; Brillowska-Dąbrowska, A.; Kucińska-Lipka, J. Composite Polyurethane-Polylactide (PUR/PLA) Flexible Filaments for 3D Fused Filament Fabrication (FFF) of Antibacterial Wound Dressings for Skin Regeneration. Materials 2021, 14(20), 6054. https://doi.org/10.3390/ma14206054
https://doi.org/10.3390/ma14206054

[14] McMahan, S.; Taylor, A.; Copeland, K.M.; Pan, Z.; Liao, J.; Hong, Y. Current Advances in Biodegradable Synthetic Polymer Based Cardiac Patches. J. Biomed. Mater. Res. A 2020, 108(4), 972-983. https://doi.org/10.1002/jbm.a.36874
https://doi.org/10.1002/jbm.a.36874

[15] Skorokhoda, V.; Semenyuk, N.; Melnyk, J.; Suberlyak, O. Hydrogels Penetration and Sorption Properties in the Substances Release Controlled Processes. Chem. Chem. Technol. 2009, 3(2), 117-121. https://doi.org/10.23939/chcht03.02.117
https://doi.org/10.23939/chcht03.02.117

[16] Wong, R.S.H.; Ashton, M.; Dodou, K. Effect of Crosslinking Agent Concentration on the Properties of Unmedicated Hydrogels. Pharmaceutics 2015, 7(3), 305-319. https://doi.org/10.3390/pharmaceutics7030305
https://doi.org/10.3390/pharmaceutics7030305

[17] Bukhari, S.M.H.; Khan, S.; Rehanullah, M.; Ranjha, N.M. Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of pH and Composition on Swelling and Drug Release. Int. J. Polym. Sci. 2015, 2015, 187961. https://doi.org/10.1155/2015/187961
https://doi.org/10.1155/2015/187961

[18] Jones, L.; May, C.; Nazar, L.; Simpson, T. In Vitro Evaluation of the Dehydration Characteristics of Silicone Hydrogel and Conventional Hydrogel Contact Lens Materials. Contact Lens Anterior Eye 2002, 25(3), 147-156. https://doi.org/10.1016/S1367-0484(02)00033-4
https://doi.org/10.1016/S1367-0484(02)00033-4