Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Features of (Benzo)Imidazo[2,1-b][1,3]thiazine Mezylates Reaction with Nucleophilic Reagents

Nataliia Slyvka1, Lesya Saliyeva1, Mariia Litvinchuk2, Svitlana Shishkina3, Mykhailo Vovk2
Affiliation: 
1 Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, Volya Ave. 13, Lutsk 43025, Ukraine 2 Department of Functional Heterocyclic Systems, Institute of Organic Chemistry of National Academy of Sciences of Ukraine, Acad. Kuharya St. 5, Kyiv 02660, Ukraine 3 Department of X-ray Diffraction Study and Quantum Chemistry, SSI “Institute for Single Crystals”, National Academy of Sciences of Ukraine, Nauka Ave. 60, Kharkiv 61000, Ukraine slivka.natalia@vnu.edu.ua
DOI: 
https://doi.org/10.23939/chcht17.03.542
AttachmentSize
PDF icon full_text.pdf351.99 KB
Abstract: 
Peculiarities of the course of the methanesulfo-derivatives of (benzo)imidazo[2,1-b][1,3]thiazines reac-tions with a number of nucleophilic reagents were studied. It was determined that they react nonselectively with potassium thiocyanate to form a mixture of thio- and isothiocyanate derivatives. When interacting with sodium azide, nucleophilic substitution competes with an elimination reaction. The latter is dominant in the reaction with sodium cyanide. The spatial structure of one of the isomer elimination products, 4H-benzo[4,5]imidazo[2,1-b][1,3] thiazine, was established by X-ray structural analysis.
References: 

[1] Radini, A.M.; Abdel-Wahab, B.F.; Khidre, R.E. Synthetic Routes to Imidazothiazines. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 844-856. https://doi.org/10.1080/10426507.2015.1119148
https://doi.org/10.1080/10426507.2015.1119148

[2] Goulart, T.A.C.; Kazmirski, J.A.G.; Back, D.F.; Zeni, G. Cyclization of Thiopropargyl Benzimidazoles by Combining Iron(III) Chloride and Diorganyl Diselenides. J. Org. Chem. 2019, 84, 14113-14126. https://doi.org/10.1021/acs.joc.9b02276
https://doi.org/10.1021/acs.joc.9b02276

[3] Ulomskiy, E.N.; Ivanova, A.V.; Gorbunov, E.B.; Esaulkova, I.L.; Slita, A.V.; Sinegubova, E.O.; Voinkov, E.K.; Drokin, R.A.; Butorin, I.I.; Gazizullina, E.R. et al. Synthesis and Biological Evalu-ation of 6-Nitro-1,2,4-triazoloazines Containing Polyphenol Frag-ments Possessing Antioxidant and Antiviral Activity. Bioorganic Med. Chem. Lett. 2020, 30, 127216. https://doi.org/10.1016/j.bmcl.2020.127216
https://doi.org/10.1016/j.bmcl.2020.127216

[4] Abdel-Mohsen, H.T.; Abood, A.; Flanagan, K.J.; Meindl, A.; Senge, M.O.; Diwani, H.I.El. Synthesis, Crystal Structure, and ADME Prediction Studies of Novel Imidazopyrimidines as Antibacterial and Cytotoxic Agents. Arch. Pharm. 2020, 353, 1900271. https://doi.org/10.1002/ardp.201900271
https://doi.org/10.1002/ardp.201900271

[5] Demchenko, N.; Tkachenko, S.; Demchenko, S. Synthesis, Antibacterial and Anti-Corossive Activity of 2,3-Dihydroimidazo[1,2-a]pyridinium Bromides. Chem. Chem. Tech-nol. 2020, 14, 327-333. https://doi.org/10.23939/chcht14.03.327
https://doi.org/10.23939/chcht14.03.327

[6] Muhammad, Z.A.; Farghaly, T.A.; Althagafi, I.; AlHussain, S.A.; Zaki, M.E.A.; Harras, M.F. Synthesis of Antimicrobial Azo-loazines and Molecular Docking for Inhibiting COVID-19. J. Heterocycl. Chem. 2021, 58, 1286-1301. https://doi.org/10.1002/jhet.4257
https://doi.org/10.1002/jhet.4257

[7] Rodríguez, R.; Alejandro, O.; Vergara, M.; Sánchez, J.; Martínez, M.; Sandoval, Z.; Cruz, A.; Organillo, A. Synthesis, Crystal Structure, Antioxidant Activity and DFT Study of 2-Aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-One. J. Mol. Struct. 2020, 1199, 127036. https://doi.org/10.1016/j.molstruc.2019.127036
https://doi.org/10.1016/j.molstruc.2019.127036

[8] Thompson, A.M.; Marshall, A.J.; Maes, L.; Yarlett, N.; Bacchi, C.J.; Gaukel, E.; Wring, S.A.; Launay, D.; Braillard, S.; Chatelain, E. et al. Assessment of a Pretomanid Analogue Library for African trypanosomiasis: Hit-to-Lead Studies on 6-Substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorganic Med. Chem. Lett. 2018, 28, 207-213. https://doi: 10.1016/j.bmcl.2017.10.067
https://doi.org/10.1016/j.bmcl.2017.10.067

[9] Nikolova, I.; Slavchev, I.; Ravutsov, M.; Dangalov, M.; Nikolova, Y.; Zagranyarska, I.; Stoyanova, A.; Nikolova, N.; Mukova, L.; Grozdanov, P. et al. Anti-Enteroviral Activity of New MDL-860 Analogues: Synthesis, in vitro/in vivo Studies and QSAR Analysis. Bioorg. Chem. 2019, 85, 487-497. https://doi:10.1016/j.bioorg.2019.02.020
https://doi.org/10.1016/j.bioorg.2019.02.020

[10] Gong, J.-X.; He, Y.; Cui, Z.-L.; Guo, Y.-W. Synthesis, Spectral Characterization, and Antituberculosis Activity of Thiazino[3,2-а]benzimidazole Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1036-1041. https://doi.org/10.1080/10426507.2015.1135149
https://doi.org/10.1080/10426507.2015.1135149

[11] Thompson, A.M.; O'Connor, P.D.; Marshall, A.J.; Francisco, A.F.; Kelly, J.M.; Riley, J.; Read, K.D.; Perez, C.J.; Cornwall, S.; Thompson, R.C.A. et al. Re-Evaluating Pretomanid Analogues for Chagas disease: Hit-to-Lead Studies Reveal Both in vitro and in vivo Trypanocidal Efficacy. Eur. J. Med. Chem. 2020, 207, 112849. https://doi.org/10.1016/j.ejmech.2020.112849
https://doi.org/10.1016/j.ejmech.2020.112849

[12] Meric, A.; Incesu, Z.; Hatipoglu, I. Synthesis of Some 3,4-Disubstituted-6,7-dihydroimidazo[2,1-b][1,3]thiazole and 3,4-Disubstituted-7,8-dihydro-6H-imidazo[2,1-b][1,3]thiazine Deriva-tives and Evaluation of their Cytotoxicities against F2408 and 5RP7 Cells. Med. Chem. Res. 2008, 17, 30-41. https://doi.org/10.1007/s00044-008-9090-7
https://doi.org/10.1007/s00044-008-9090-7

[13] Schoeder, C.T.; Kaleta, M.; Mahardhika, A.B.; Olejarz-Maciej, A.; Łażewska, D.; Kieć-Kononowicz, K.; Müller, Ch.E. Structure-Activity Relationships of Imidazothiazinones and Analogs as Anta-gonists of the Cannabinoid-Activated Orphan G Protein-Coupled Receptor GPR18. Eur. J. Med. Chem. 2018, 155, 381-397. https://doi.org/10.1016/j.ejmech.2018.05.050
https://doi.org/10.1016/j.ejmech.2018.05.050

[14] Volkov, O.A.; Cosner, C.C.; Brockway, A.J.; Kramer, M.; Booker, M.; Zhong, Sh.; Ketcherside, A.; Wei, Sh.; Longgood, J.; McCoy, M. et al. Identification of Trypanosoma brucei AdoMetDC Inhibitors Using a High-Throughput Mass Spectrometry-Based Assay. ACS Infect. Dis. 2017, 3, 512-526. https://doi:10.1021/acsinfecdis.7b00022
https://doi.org/10.1021/acsinfecdis.7b00022

[15] Litvinchuk, M.B.; Bentya, A.V.; Slyvka, N.Yu.; Vovk, M.V. Synthesis and Functionalization of 2-Alkylidene-5-(bromomethyl)-2,3-dihydro-1,3-thiazole Derivatives. Chem. Heterocycl. Compd. 2018, 54, 559-567. https://doi.org/10.1007/s10593-018-2304-0
https://doi.org/10.1007/s10593-018-2304-0

[16] Saliyeva, L.M.; Vas'kevich, R.I.; Slyvka, N.Yu.; Vovk, M.V. The Synthesis and Structural Functionalization of 6-Substituted 2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-ones. J. Org. Pharm. Chem. 2018, 16, 31-41. https://doi.org/10.24959/ophcj.18.940
https://doi.org/10.24959/ophcj.18.940

[17] Shakh, Y.І.; Karkhut, А.І.; Bolibrukh, K.B.; Polovkovych, S.V. Rehioselektyvnist reaktsii nukleofilnoho zamishchennia mizh 5-zamishchenymy 1,4-naftokhinonamy ta aminotiotriazolamy. Khimiya, tekhnologiya rechovyn ta ih zastosuvannya 2015, 812, 210-217. (in Ukrainian)

[18] Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, A64, 112-122. http://dx.doi.org/10.1107/S0108767307043930
https://doi.org/10.1107/S0108767307043930

[19] Kochergin, P.M.; Bagrii, A.K.; Galenko, A.K.; Kovpak, D.V.; Aleksandrova, E.V. Synthesis of 3-Halogeno Derivatives of Imida-zo[2,1-b]- and benzimidazo[2,1-b][1,3]thiazines. Chem. Heterocycl. Compd. 1997, 33, 882. https://doi.org/10.1007/BF02253051
https://doi.org/10.1007/BF02253051

[20] Saliyeva, L.; Slyvka, N.; Holota, S.; Grozav, A.; Yakovychuk, N.; Litvinchuk, M.; Vovk, M. Synthesis and Evaluation of Bioac-tivity of (2-Pyridinyloxy)substituted (benzo)imidazo[2,1-b][1,3]thiazines. Biointerface Res. Appl. Chem. 2022, 12, 5031-5044. https://doi.org/10.33263/BRIAC124.50315044
https://doi.org/10.33263/BRIAC124.50315044

[21] Orlov, M.A.; Kapitanov, I.V.; Korotkikh, N I.; Shvaika, O.P. Synthesis and Recylization of 2,3,9,10-Tetrahydro-8H-[1,4]Dioxino[2,3-f]-[1,3]Thiazino[3,2-a]Benzimidazolium Salts. Chem. Heterocycl. Compd. 2014, 50, 111-116. https://doi.org/10.1007/s10593-014-1453-z
https://doi.org/10.1007/s10593-014-1453-z

[22] Ouasif, L.; Ghoul, M.; Achour, R.; Saadi, M. 3,4-Dihydro-2H-benzo[4,5]imidazo[2,1-b][1,3]thiazin-3-ol. IUCrData 2017, 2, x170429. https://doi.org/10.1107/S2414314617004291
https://doi.org/10.1107/S2414314617004291

[23] Gordon, A.J.; Ford, R.A. The Chemist's Companion; Wiley-Interscience: New York, 1972.

[24] Novikov, R.V.; Danilkina, N.A.; Balova, I.A. Cyclocondensa-tion of n-(Prop-2-yn-1-yl)- and n-(Penta-2,4-diyn-1-yl)-o-phenylenediamines with Phenyl Isothiocyanate and Carbon Disul-fide. Chem. Heterocycl. Compd. 2011, 47, 758-766. https://doi:10.1007/s10593-011-0831-z
https://doi.org/10.1007/s10593-011-0831-z

[25] Burgi, H.-B.; Dunitz, J.D. Structure correlation. Vol.2; VCH: Weinheim, 1994; pp 741-784.
https://doi.org/10.1002/9783527616091