Experimental Investigation and Multi-Gene Genetic Programming Simulation of Portland Clinker Burnability

Vahab Ghalandari1, Hamidreza Bagheri2, Ali Mohebbi2, Hadi Esmaeili2 (pp 559-566)
Affiliation: 
1 Kerman Momtazan Cement Company, Kerman, Iran 2 Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran amohebbi2002@yahoo.com, amohebbi@uk.ac.ir
DOI: 
https://doi.org/10.23939/chcht15.04.559
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
In this study, the effect of chemical composition of the raw material on the clinker burnability was studied by determination of free CaO (wt %) content of clinker. The burnability of two types of Portland clinker was investigated for silica modules of 2.3, 2.5 and 2.7 and lime saturation factor of 0.88–0.98. In addition, using the Multi-gene genetic programming (MGGP) model, the burnability of clinker was predicted. The results of MGGP model indicated that the performance of the model for predicting the amount of free CaO (wt %) was acceptable. Moreover, using MGGP, a promising correlation was introduced for accurately calculating the amount of free CaO (wt %). The performance of this correlation was compared with FL-Smidth, and it was established that the average errors of MGGP correlation and FL-Smidth equation were 2.95 and 7.45 %, respectively.
References: 

[1] Herfort D., Moir G., Johansen V. et al.: Adv. Cem. Res, 2010, 22, 187. https://doi.org/10.1680/adcr.2010.22.4.187
https://doi.org/10.1680/adcr.2010.22.4.187

[2] Hokfors B., Viggh E., Bostrom D., Backman R.: Adv. Cem. Res, 2015, 27, 50. https://doi.org/10.1680/adcr.13.00071
https://doi.org/10.1680/adcr.13.00071

[3] Frigione G., Zenone F., Esposito M.: Cem. Concr. Res, 1983, 13, 483. https://doi.org/10.1016/0008-8846(83)90006-6
https://doi.org/10.1016/0008-8846(83)90006-6

[4] Stephan D., Maleki H., Knofel D. et al.: Cem. Concr. Res, 1999, 29, 545. https://doi.org/10.1016/S0008-8846(99)00009-5
https://doi.org/10.1016/S0008-8846(99)00009-5

[5] Chen Y., Shin P., Chiang L. et al.: J. Hazard. Mater, 2009, 170, 443. https://doi.org/10.1016/j.jhazmat.2009.04.076
https://doi.org/10.1016/j.jhazmat.2009.04.076

[6] Kolovos K., Barafaka S., Kakali G., Tsivilis S.: Ceramics-Silikaty, 2005, 49, 205.

[7] Ifka T., Palou M., Bazelvo Z.: Ceram-Silikaty, 2012, 56, 76.

[8] Ract P., Espinosa D., Tenorio J.: Waste Manage., 2003, 23, 281. https://doi.org/10.1016/S0956-053X(02)00061-2
https://doi.org/10.1016/S0956-053X(02)00061-2

[9] Kakali G., Parissakis G., Bouras D.: Cem. Concr. Res, 1996, 26, 1473. https://doi.org/10.1016/0008-8846(96)00143-3
https://doi.org/10.1016/0008-8846(96)00143-3

[10] Kolovos K., Tsivilis G., Kakali G.: Cem. Concr. Res, 2002, 32, 463. https://doi.org/10.1016/S0008-8846(01)00705-0
https://doi.org/10.1016/S0008-8846(01)00705-0

[11] Ma X., Chen H., Wang P.: Cem. Concr. Res, 2010, 40, 1681. https://doi.org/10.1016/j.cemconres.2010.08.009
https://doi.org/10.1016/j.cemconres.2010.08.009

[12] Altun I.: Cem. Concr. Res, 1999, 29, 1847. https://doi.org/10.1016/S0008-8846(99)00151-9
https://doi.org/10.1016/S0008-8846(99)00151-9

[13] Boughanmi S., Labidi I., Megriche A. et al.: Cem. Concr. Res, 2018, 105, 72. https://doi.org/10.1016/j.cemconres.2018.01.006
https://doi.org/10.1016/j.cemconres.2018.01.006

[14] Shang D., Wang M., Xia Z. et al.: Constr. Build. Mater., 2017, 146, 344. https://doi.org/10.1016/j.conbuildmat.2017.03.129
https://doi.org/10.1016/j.conbuildmat.2017.03.129

[15] Kolovos K., Tsivilis A., Kakali G.: J. Therm. Anal. Calorim., 2004, 77, 759. https://doi.org/10.1023/B:JTAN.0000041655.82776.09
https://doi.org/10.1023/B:JTAN.0000041655.82776.09

[16] Zhao Y., Lu L., Wang S. et al.: J. Inorg. Organomet. P., 2013, 23, 930. https://doi.org/10.1007/s10904-013-9873-2
https://doi.org/10.1007/s10904-013-9873-2

[17] Ghalandari V., Rafsanjani H.: Chem. Chem. Technol, 2019, 13, 205. https://doi.org/10.23939/chcht13.02.205
https://doi.org/10.23939/chcht13.02.205

[18] Ghalandari V., Majd M., Golestanian A.: Energy, 2019, 173, 833. https://doi.org/10.1016/j.energy.2019.02.102
https://doi.org/10.1016/j.energy.2019.02.102

[19] Bagheri H., Mohebbi A.: Korean J. Chem. Eng, 2017, 34, 2686. https://doi.org/10.1007/s11814-017-0166-2
https://doi.org/10.1007/s11814-017-0166-2

[20] Bagheri H., Ghader S.: Mol. Liq, 2017, 236, 172. https://doi.org/10.1016/j.molliq.2017.03.101
https://doi.org/10.1016/j.molliq.2017.03.101

[21] Sheikhi-Kouhsar M., Bagheri H., Raeissi S.: Fluid Phase Equilibr., 2015, 395, 51. https://doi.org/10.1016/j.fluid.2015.03.005
https://doi.org/10.1016/j.fluid.2015.03.005

[22] Bagheri H., Mansoori G., Hashemipour H.: J. Mol. Liq., 2018, 261, 174. https://doi.org/10.1016/j.molliq.2018.03.081
https://doi.org/10.1016/j.molliq.2018.03.081

[23] Mohebbi A., Taheri M., Soltani A.: Int. J. Refrig., 2008, 31, 1317. https://doi.org/10.1016/j.ijrefrig.2008.04.008
https://doi.org/10.1016/j.ijrefrig.2008.04.008

[24] Bavdaz G., Kocijan J., Imeas T.: T. I. Meas. Control, 2007, 29, 17. https://doi.org/10.1177/0142331207070362
https://doi.org/10.1177/0142331207070362

[25] Pani A., Vadlamudi V., Mohanta H.: ISA Transact., 2013, 52, 19. https://doi.org/10.1016/j.isatra.2012.07.004
https://doi.org/10.1016/j.isatra.2012.07.004

[26] Kinnear Jr. K. (Ed.): Advances in Genetic Programming. MIT Press, Massachusetts 1994.

[27] Ghalandari V., Hashemipour H., Bagheri H: Fluid Phase Equilibr., 2020, 508, 112433. https://doi.org/10.1016/j.fluid.2019.112433
https://doi.org/10.1016/j.fluid.2019.112433

[28] Esmaeili H., Hashemipour H.: J. Mol. Liq., 2018, 272, 692. https://doi.org/10.1016/j.molliq.2018.10.011
https://doi.org/10.1016/j.molliq.2018.10.011

[29] Alsop P.: The Cement Plant Operations Handbook : For Dry-Process Plants, 6th edn. Tradeship Publications Ltd. 2014.

[30] Alemayehu F., Sahu O.: Adv. Mater., 2013, 2, 23. https://doi.org/10.11648/j.am.20130202.12
https://doi.org/10.11648/j.am.20130202.12