Effects of Hydrophilic Silica Nanoparticles on Morphology and Mechanical Properties of a Typical Tyre Compound

Narjes Dortaj1, Ali Mohebbi1, Hamidreza Bagheri1, Majid Aman-Alikhani2, Maryamossadat Rohani Yazdi3
Affiliation: 
1 Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 2 Compound Development Manager, Barez Tyre Co., Kerman, Iran 3 Golnaz Vegetable Oil Co. amohebbi2002@yahoo.com, amohebbi@uk.ac.ir
DOI: 
https://doi.org/10.23939/chcht16.01.150
AttachmentSize
PDF icon full_text.pdf407.75 KB
Abstract: 
This research aimed to study the effects of adding hydrophilic silica nanoparticles as nanofiller on tread properties of a typical tyre compound. In this respect, four compounds were prepared as a representative of the tread of the tyre. The amount of 0, 1, 3, and 5 phr (parts of filler per hundred parts of rubber) of nanofiller were added by melt mixing method. Physical and mechanical properties of compounds were measured. The structure and morphology of the fractured surface of the compounds were characterized using field emission scanning electron microscopy (Fe-SEM). The results of cure and mechanical analysis of the compound series showed that the sample containing 3 phr of nanofiller possesses better properties. This observation is due to higher interaction between nanofiller and polymer macromolecules that causes better dispersion of the nanoparticles in polymer matrix.
References: 

[1] Rajarao, R.; Farzana, R., Khanna R.; Sahajwalla, V. Synthesis of SiC/Si3N4 Nanocomposite by Using Automotive Waste Tyres as Resource. J. Ind. Eng. Chem. 2015, 29, 35-38. https://doi.org/10.1016/j.jiec.2015.04.006
https://doi.org/10.1016/j.jiec.2015.04.006

[2] Tullo, A. Chemical Companies Hope Their Innovations Can Improve the Environmental Performance of Tires without Sacrificing Safety and Durability. Chem. Eng. News. 2009, 87, 10. https://doi.org/10.1021/cen-v087n046.p010
https://doi.org/10.1021/cen-v087n046.p010

[3] Marković, G.; Radovanović, B.; Marinović-Cincović, M.; Budinski-Simendić, J. The Effect of Accelerators on Curing Characteristics and Properties of Natural Rubber/Chlorosulphonated Polyethylene Rubber Blend. Mater. Manuf. Process. 2009, 24, 1224-1228. https://doi.org/10.1080/10426910902967087
https://doi.org/10.1080/10426910902967087

[4] Paul, D.; Robeson, L. Polymer Nanotechnology: Nanocomposites. Polymer. 2008, 49, 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017
https://doi.org/10.1016/j.polymer.2008.04.017

[5] Chawla, V.; Prakash, S.; Sidhu B. State of the Art: Applications of Mechanically Alloyed Nanomaterials - A Review. Mater. Manuf. Process. 2007, 22, 469-473. https://doi.org/10.1080/10426910701235900
https://doi.org/10.1080/10426910701235900

[6] Abdul Salim, Z.; Hassan, A.; Ismail, H. A Review on Hybrid Fillers in Rubber Composites. Polym. Plast. Technol. Eng. 2018, 57, 523-539. https://doi.org/10.1080/03602559.2017.1329432
https://doi.org/10.1080/03602559.2017.1329432

[7] Bagheri, H.; Hashemipour, H.; Ghader, S. Population Balance Modeling: Application in Nanoparticle Formation Through Rapid Expansion of Supercritical Solution. Comput. Part. Mech. 2019, 6, 721-737. https://doi.org/10.1007/s40571-019-00257-w
https://doi.org/10.1007/s40571-019-00257-w

[8] Bagheri, H.; Hashemipour, H.; Mirzaie, M. Investigation on Hydrodynamic and Formation of Nano Particle by RESS Process: The Numerical Study. J. Mol. Liq. 2019, 281, 490-505. https://doi.org/10.1016/j.molliq.2019.02.108
https://doi.org/10.1016/j.molliq.2019.02.108

[9] Bagheri, H.; Mansoori, G.; Hashemipour, H. A Novel Approach to Predict Drugs Solubility in Supercritical Solvents for RESS Process Using Various Cubic Eos-Mixing Rule. J. Mol. Liq. 2018, 261, 174-188. https://doi.org/10.1016/j.molliq.2018.03.081
https://doi.org/10.1016/j.molliq.2018.03.081

[10] Rubber Technologist's Handbook, Vol. 2; De, S.; Naskar, K.; White, J., Eds.; Smithers Rapra Technology: Shawbury, UK, 2009.

[11] Ahn, S.; Kim, S.; Kim, B. et al. Mechanical Properties of Silica Nanoparticle Reinforced Poly(ethylene2,6-naphthalate). Macromol. Res., 2004, 12, 293-302. https://doi.org/10.1007/BF03218403
https://doi.org/10.1007/BF03218403

[12] Ekengwu, I.; Utu, O.; Okafor, C. Nanotechnology in Automotive Industry: The Potential of Graphene. Iconic Res. Eng. J., 2019, 3, 31-37. https://irejournals.com/formatedpaper/1701322.pdf

[13] Vishvanathperumal, S.; Anand, G. Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. Silicon. 2020. https://doi.org/10.1007/s12633-020-00792-9
https://doi.org/10.1007/s12633-020-00792-9

[14] White, J.; Kim, K. Thermoplastic and Rubber Compounds. Technology and Physical Chemistry; Hanser Publications: Ohio, 2012.

[15] Bhattacharya, M.; Bhowmick A. Synergy in Carbon Black-Filled Natural Rubber Nanocomposites. Part I: Mechanical, Dynamic Mechanical Properties, and Morphology. J. Mater. Sci. 2010, 45, 6126-6138. https://doi.org/10.1007/s10853-010-4699-6
https://doi.org/10.1007/s10853-010-4699-6

[16] Ten Brinke, A. Silica Reinforced Tyre Rubbers. PhD thesis, University of Twente, the Netherlands, 2002.

[17] Kumbul, A.; Gokturk, E.; Sahmetlioglu, E. Synthesis, Characterization, Thermal Stability and Electrochemical Properties of Ortho-Imine-Functionalized Oligophenol via Enzymatic Oxidative Polycondensation. J. Polym. Res. 2016, 23, 52. https://doi.org/10.1007/s10965-016-0953-1
https://doi.org/10.1007/s10965-016-0953-1

[18] Pal, K.; Rajasekar, R.; Kang, D. et al. Effect of Fillers on Natural Rubber/High Styrene Rubber Blends with Nano Silica: Morphology and Wear. Mater. Des. 2010, 31, 677-686. https://doi.org/10.1016/j.matdes.2009.08.014
https://doi.org/10.1016/j.matdes.2009.08.014

[19] Kaewsakul, W. Silica-Reinforced Natural Rubber for Low Rolling Resistance, Energy-Saving Tires: Aspects of Mixing, Formulation and Compatibilization. PhD thesis, University of Twente, the Netherlands, 2013.

[20] Xia, L.; Song, J.; Wang, H.; Kan, Z. Silica Nanoparticles Reinforced Natural Rubber Latex Composites: The Effects of Silica Dimension and Polydispersity on Performance. J. Appl. Polym. Sci., 2019, 136, 47449. https://doi.org/10.1002/app.47449
https://doi.org/10.1002/app.47449

[21] Tancharernrat, T.; Rempel, G.; Prasassarakich, P. Preparation of Styrene Butadiene Copolymer-Silica Nanocomposites via Differential Microemulsion Polymerization and NR/SBR-SiO2 Membranes for Pervaporation of Water-Ethanol Mixtures. Chem. Eng. J. 2014, 258, 290-300. https://doi.org/10.1016/j.cej.2014.05.151
https://doi.org/10.1016/j.cej.2014.05.151

[22] Rubber Nanocomposites: Preparation, Properties, and Applications; Thomas, S., Stephen, R., Eds.; John Wiley & Sons, 2010. https://doi.org/10.1002/9780470823477
https://doi.org/10.1002/9780470823477

[23] Park, S.; Jin, S.; Kaang, S. Influence of Thermal Treatment of Nano-Scaled Silica on Interfacial Adhesion Properties of the Silica/Rubber Compounding. Mater. Sci. Eng. A. 2005, 398, 137-141. https://doi.org/10.1016/j.msea.2005.03.012
https://doi.org/10.1016/j.msea.2005.03.012

[24] Chen, Y.; Peng, Z.; Kong, L. et al. Natural Rubber Nanocomposite Reinforced with Nano Silica. Polym. Eng. Sci. 2008, 48, 1674-1677. https://doi.org/10.1002/pen.20997
https://doi.org/10.1002/pen.20997

[25] Mathew, L.; Narayanankutty, S. Nanosilica as Dry Bonding System Component and as Reinforcement in Short Nylon-6 Fiber/Natural Rubber Composite. J. Appl. Polym. Sci. 2009, 112, 2203-2212. https://doi.org/10.1002/app.29718
https://doi.org/10.1002/app.29718

[26] Meera, A.; Said, S.; Grohens, Y. et al. Tensile Stress Relaxation Studies of TiO2 and Nanosilica Filled Natural Rubber Composites. Ind. Eng. Chem. Res., 2009, 48, 3410-3416. https://doi.org/10.1021/ie801494s
https://doi.org/10.1021/ie801494s

[27] Chayan, D.; Kapgate Bharat, P. Preparation and Studies of Nitrile Rubber Nanocomposites with Silane Modified Silica Nanoparticles. Res. J. Recent Sci. 2012, 1, 357-360. http://www.isca.in/rjrs/archive/v1/iISC-2011/62.ISCA-ISC-2011-11MatS-05.pdf

[28] Yusof, N.; Noguchi, K.; Fukuhara, L. et al. Preparation and Properties of Natural Rubber with Filler Nanomatrix Structure. Colloid Polym. Sci. 2015, 293, 2249-2256. https://doi.org/10.1007/s00396-015-3615-7
https://doi.org/10.1007/s00396-015-3615-7

[29] Ahmed, J.; Al-Maamori, M.; Ali, H. Effect of Nano Silica on the Mechanical Properties of Styrene-Butadiene Rubber (SBR) Composite. Int. J. Mater. Sci. Appl., 2015, 4, 15-20. https://doi.org/10.11648/j.ijmsa.s.2015040201.14
https://doi.org/10.11648/j.ijmsa.s.2015040201.14

[30] Advanced Rubber Composites; Heinrich, G., Ed.; Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-642-19504-4
https://doi.org/10.1007/978-3-642-19504-4

[31] Dileep, P.; Narayanankutty, S. Styrenated Phenol Modified Nanosilica for Improved Thermo-Oxidative and Mechanical Properties of Natural Rubber. Polym. Test., 2020, 82, 106302. https://doi.org/10.1016/j.polymertesting.2019.106302
https://doi.org/10.1016/j.polymertesting.2019.106302

[32] Dileep, P.; Narayanankutty, S. A Novel Method for Preparation of Nanosilica from Bamboo Leaves and Its Green Modification as a Multi-Functional Additive in Styrene Butadiene Rubber. Mater. Today Commun. 2020, 24, 100957. https://doi.org/10.1016/j.mtcomm.2020.100957
https://doi.org/10.1016/j.mtcomm.2020.100957

[33] Hawleyown, S. Physical Testing of Rubber-Third Edition: By R. P. Brown. Chapman and Hall, London, 1996. 352 pp. ISBN 0-412-60890-1. Polym. Test. 1996, 5, 501-502. https://doi.org/10.1016/0142-9418(96)00024-4
https://doi.org/10.1016/0142-9418(96)00024-4

[34] Ramarad, S.; Khalid, M.; Ratnam, C. et al. Waste Tire Rubber in Polymer Blends: a Review on the Evolution, Properties and Future. Prog. Mater. Sci. 2015, 72, 100-140. https://doi.org/10.1016/j.pmatsci.2015.02.004
https://doi.org/10.1016/j.pmatsci.2015.02.004