Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons
Attachment | Size |
---|---|
full_text.pdf | 561.66 KB |
Keywords:
[1] Patrylak, L.; Pertko, O. Peculiarities of Activity Renovation of Zeolite Catalysts Coked in Hexane Cracking. Chem. Chem. Technol. 2018, 12, 538-542. https://doi.org/10.23939/chcht12.04.538
https://doi.org/10.23939/chcht12.04.538
[2] Barakov, R.Y.; Shcherban, N.D.; Yaremov, P.S.; Voloshyna, Y.G.; Krylova, M.M.; Tsyrina, V.V.; Ilyin, V.G. Effect of the Structure and Acidity of Micro-Mesoporous Alumosilicates on Their Catalytic Activity in Cumene Cracking. Theor. Exp. Chem. 2016, 52, 212-220. https://doi.org/10.1007/s11237-016-9470-x
https://doi.org/10.1007/s11237-016-9470-x
[3] Liu, Z.; Hua, Y.; Wang, J.; Dong, X.; Tian, Q.; Han, Y. Recent Progress in the Direct Synthesis of Hierarchical Zeolites: Synthetic Strategies and Characterization Methods. Mater. Chem. Front. 2017, 1, 2195-2212. https://doi.org/10.1039/C7QM00168A
https://doi.org/10.1039/C7QM00168A
[4] Kurmach, M.M.; Larina, O.V.; Kyriienko, P.I.; Yaremov, P.S.; Trachevsky, V.V.; Shvets, O.V.; Soloviev, S.O. Hierarchical Zr-MTW Zeolites Doped with Copper as Catalysts of Ethanol Conversion into 1,3-Butadiene. ChemistrySelect. 2018, 3, 8539-8546. https://doi.org/10.1002/slct.201801971
https://doi.org/10.1002/slct.201801971
[5] Bai, R.; Song, Y.; Li, Y.; Yu, J. Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry 2019, 1, 601-611. https://doi.org/10.1016/j.trechm.2019.05.010
https://doi.org/10.1016/j.trechm.2019.05.010
[6] Khan, W.; Jia, X.; Wu, Zh.; Choi, J.; Yip, A.C.K. Incorporat-ing Hierarchy into Conventional Zeolites for Catalytic Biomass Conversions: A Review. Catalysts 2019, 9, 127-150. https://doi.org/10.3390/catal9020127
https://doi.org/10.3390/catal9020127
[7] Martins, G.S.V.; dos Santos, E.R.F.; Rodrigues, M.G.F.; Pecchi, G.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Ni-Pt/Catalysts Supported on Mordenite. Modern Research in Catalysis 2013, 2, 119-126. https://doi.org/10.4236/mrc.2013.24017
https://doi.org/10.4236/mrc.2013.24017
[8] Sousa, B.V.; Brito, K.D.; Alves, J.J.N.; Rodrigues, M.G.F.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Pt/HMOR: Effect of Platinum Content. Reac. Kinet. Mech. Cat. 2011, 102, 473-485. https://doi.org/10.1007/s11144-010-0273-0
https://doi.org/10.1007/s11144-010-0273-0
[9] Ono, Y. A Survey of the Mechanism in Catalytic Isomeriza-tion of Alkanes. Catal. Today 2003, 81, 3-16. https://doi.org/10.1016/S0920-5861(03)00097-X
https://doi.org/10.1016/S0920-5861(03)00097-X
[10] Patriljak, K.I.; Bobonich, F.M.; Patriljak, L.K.; Voloshina, Yu.G.; Levchuk, N.N.; Solomaha, V.N.; Cuprik, I.N. Gidroizomerizacija N-Geksana na Palladij- i Cirkonilsoderzhashhih Modificirovannyh Mordenit-Klinoptilolitovyh Porodah. Katalìz ta naftohìmìâ 2000, 4, 10-15.
[11] Patrylak, K.I.; Bobonich, F.M.; Tsupryk, I.N.; Bobik, V.V.; Levchuk, N.N.; Solomakha, V.N. The Role of External Acid Sites of Palladium-Containing Zeolite Catalysts in Hexane Isomerization. Pet. Chem. 2003, 43, 387-394.
[12] Bobik, V.V.; Bobonich, F.M.; Belokopytov, Yu.V. Effect of External Acidity of Mordenite-Supported Catalysts on the 2,2-Dimethylbutane Content in Hydroisomerization Products of N-Hexane. Theor. Exp. Chem. 2003, 39, 364-368. https://doi.org/10.1023/B:THEC.0000013989.04033.e1
https://doi.org/10.1023/B:THEC.0000013989.04033.e1
[13] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411-425. https://doi.org/10.1007/s13204-021-01682-1
https://doi.org/10.1007/s13204-021-01682-1
[14] Voloshyna, Yu.G.; Pertko, O.P.; Povazhnyi, V.A.; Patrylak, L.K.; Yakovenko, A.V. Influence of the Development of a System of Nanoscale Pores in a Mordenite-Containing Rock on Its Selectivity for Di-Branched Products of n-Hexane Hydroisomerization. Appl. Nanosci. [Online early access]. https://doi.org/10.1007/s13204-022-02632-1 Published online: September 13, 2022. https://www.springer.com/journal/13204 (accessed Oct 15, 2022).
https://doi.org/10.1007/s13204-022-02632-1
[15] Woo, H.C.; Lee, K.H.; Lee, J.S. Catalytic Skeletal Isomeriza-tion of N-Butenes to Isobutene over Natural Clinoptilolite Zeolite. Appl. Catal. A-Gen. 1996, 134, 147-158. https://doi.org/10.1016/0926-860X(95)00216-2
https://doi.org/10.1016/0926-860X(95)00216-2
[16] Dziedzicka, A.; Sulikowski, B.; Ruggiero-Mikołajczyk, M. Catalytic and Physicochemical Properties of Modified Natural Clinoptilolite. Catal. Today 2016, 259, 50-58. https://doi.org/10.1016/j.cattod.2015.04.039
https://doi.org/10.1016/j.cattod.2015.04.039
[17] Miądlicki, P.; Wróblewska, A.; Kiełbasa, K.; Koren, Z.C.; Michalkiewicz, B. Sulfuric Acid Modified Clinoptilolite as a Solid Green Catalyst for Solvent-Free α-Pinene Isomerization Process. Microporous Mesoporous Mater. 2021, 324, 111266. https://doi.org/10.1016/j.micromeso.2021.111266
https://doi.org/10.1016/j.micromeso.2021.111266
[18] Retajczyk, M.; Wróblewska, A.; Szymańska, A.; Michalkie-wicz, B. Isomerization of Limonene over Natural Zeolite-Clinoptilolite. Clay Minerals 2019, 54, 121-129. https://doi.org/10.1180/clm.2019.18
https://doi.org/10.1180/clm.2019.18
[19] Khoshbin, R.; Haghighi, M.; Asgari, N. Direct Synthesis of Dimethyl Ether on the Admixed Nanocatalysts of CuO-ZnO-Al2O3 and HNO3-Modified Clinoptilolite at High Pressures: Surface Properties and Catalytic Performance. Mater. Res. Bull. 2013, 48, 767-777. https://doi.org/10.1016/j.materresbull.2012.11.057
https://doi.org/10.1016/j.materresbull.2012.11.057
[20] Yilmaz, S.; Ucar, S.; Artok, L.; Gulec, H. The Kinetics of Citral Hydrogenation over Pd Supported on Clinoptilolite Rich Natural Zeolite. Appl. Catal. A-Gen. 2005, 287, 261-266. https://doi.org/10.1016/j.apcata.2005.04.002
https://doi.org/10.1016/j.apcata.2005.04.002
[21] Barthomeuf, D. Zeolite Acidity Dependence on Structure and Chemical Environment. Correlations with Catalysis. Mater. Chem. Phys. 1987, 17, 49-71. https://doi.org/10.1016/0254-0584(87)90048-4
https://doi.org/10.1016/0254-0584(87)90048-4
[22] Tur'yan, Y.I. Theoretical Bases of the Ammonium Ion Deter-mination by Formol Titration. Rev. Anal. Chem. 2010, 29, 25-37. https://doi.org/10.1515/REVAC.2010.29.1.25
https://doi.org/10.1515/REVAC.2010.29.1.25
[23] Database of Zeolite Structures Home Page. http://www.iza-structure.org/databases/ (accessed 2022-10-15).
[24] Zuo, R.-F.; Du, G.-X.; Yang, W.-G.; Liao, L.-B.; Li, Z. Mineralogical and Chemical Characteristics of a Powder and Purified Quartz from Yunnan Province. Open Geosci. 2016, 8, 606-611. https://doi.org/10.1515/geo-2016-0055
https://doi.org/10.1515/geo-2016-0055
[25] Pechar, F.; Rykl, D. Study of the Complex Vibrational Spectra of Natural Zeolite Mordenites. Zeolites 1983, 3, 329-332. https://doi.org/10.1016/0144-2449(83)90177-X
https://doi.org/10.1016/0144-2449(83)90177-X
[26] Jansen, J.C.; van der Gaag, F.J.; van Bekkum, H. Identifica-tion of ZSM-type and Other 5-Ring Containing Zeolites by I.R. Spectroscopy. Zeolites 1984, 4, 369-372. https://doi.org/10.1016/0144-2449(84)90013-7
https://doi.org/10.1016/0144-2449(84)90013-7
[27] Patrylak, L.K.; Voloshyna, Yu.G.; Pertko, O.P.; Yakovenko, A.V.; Povazhnyi, V.A.; Melnychuk, O.V. Investigation of the Features of Nickel-Modified Mordenite Zeolites. Water&Water Purification Technologies. Scientific and Technical News 2021, 30, 59-66. https://doi.org/10.20535/2218-930022021241332
https://doi.org/10.20535/2218-930022021241332
[28] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, With Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051-1069. https://doi.org/10.1515/pac-2014-1117
https://doi.org/10.1515/pac-2014-1117
[29] Hernández, M.; Rojas, F.; Lara, V. Nitrogen-Sorption Characterization of the Microporous Structure of Clinoptilolite-Type Zeolites. J. Porous Mater. 2000, 7, 443-454. https://doi.org/10.1023/A:1009662408173
https://doi.org/10.1023/A:1009662408173
[30] Monteiro, R.; Ani, C.O.; Rocha, J.; Carvalho, A.P.; Martins, A. Catalytic Behavior of Alkali-Treated Pt/HMOR in N-Hexane Hydroisomerization. Appl. Catal. A-Gen. 2014, 476, 148-157. https://doi.org/10.1016/j.apcata.2014.02.026
https://doi.org/10.1016/j.apcata.2014.02.026
[31] Gobin, O.C.; Reitmeier, S.J.; Jentys, A.; Lercher, J.A. Role of the Surface Modification on the Transport of Hexane Isomers in ZSM-5. J. Phys. Chem. C 2011, 115, 1171−1179. https://doi.org/10.1021/jp106474x
https://doi.org/10.1021/jp106474x
[32] Barthomeuf, D. Topology and Maximum Content of Isolated Species (Al, Ga, Fe, B, Si, ...) in a Zeolitic Framework. An Ap-proach to Acid Catalysis. J. Phys. Chem. 1993, 97, 10092−10096. https://doi.org/10.1021/j100141a032
https://doi.org/10.1021/j100141a032