Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Determination of Liquid Detergent Pods as a Potential Microplastic Source

Karolina Gwizdała1, Paweł Szarlej1, Przemysław Gnatowski1, Edyta Piłat1, Maciej Sienkiewicz1, Justyna Kucińska-Lipka1
Affiliation: 
1 Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland s159821@student.pg.edu.pl
DOI: 
https://doi.org/10.23939/chcht17.02.365
AttachmentSize
PDF icon full_text.pdf932.38 KB
Abstract: 
Washing pods became a popular way to add detergent to washing machines. Despite the claims about the degradability of the pod film, the sludge in pipes can be observed after the usage of such pods. This study fo-cused on a quantitative and qualitative analysis of washing pod films as a source of microplastic.
References: 

[1] PlascticsEurope. Plastics-the Facts 2021. An analysis of European plastics production, demand, and waste data. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed 2022-05-28)

[2] PlascticsEurope. Plastics-the Facts 2020. An analysis of European plastics production, demand, and waste data. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/ (accessed 2022-05-28)

[3] PlasticsEurope. Plastics-the Facts 2019. An analysis of European plastics production, demand, and waste data. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2019/ (accessed 2022-05-28)

[4] Rolsky, C.; Kelkar, V. Degradation of Polyvinyl Alcohol in US Wastewater Treatment Plants and Subsequent Nationwide Emission Estimate. Int. J. Environ. Res. Public Health 2021, 18, 6027. https://doi.org/10.3390/ijerph18116027
https://doi.org/10.3390/ijerph18116027

[5] European Chemicals Agency. Annex XV Restriction Report. Proposal for a Restriction. 22 August 2019. https://echa.europa.eu/documents/10162/05bd96e3-b969-0a7c-c6d0-441182893720 (accessed 2022-05-28)

[6] Byrne, D.; Boeije, G.; Croft, I.; Hüttmann, G.; Luijkx, G.; Meier, F.; Parulekar, Y.; Stijntjes, G. Biodegradability of Polyvinyl Alcohol Based Film Used for Liquid Detergent Capsules. Tenside, Surfactants, Deterg. 2021, 58, 88-96. https://doi.org/10.1515/tsd-2020-2326
https://doi.org/10.1515/tsd-2020-2326

[7] Aruldass, S.; Mathivanan, V.; Mohamed, A.R.; Tye, C.T. Factors Affecting Hydrolysis of Polyvinyl Acetate to Polyvinyl Alcohol. J. Environ. Chem. Eng. 2019, 7, 103238. https://doi.org/10.1016/J.JECE.2019.103238
https://doi.org/10.1016/j.jece.2019.103238

[8] Cooper, T.A. Developments in Plastic Materials and Recycling Systems for Packaging Food, Beverages and other Fast-Moving Consumer Goods; In Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG); Neil Farmer, N., Ed.; Woodhead Publishing Limited, 2013; pp 58-107. https://doi.org/10.1533/9780857098979.58
https://doi.org/10.1533/9780857098979.58

[9] Illanes, T. Synthesis of Novel Degradable Polymers for Tissue Engineering by Radical Polymerization. Synthesis and Characterization of 2-Methylene-1,3-dioxepane and Copolymerization Thereof with Vinyl Acetate Followed by Polymer Characterization and Hydrolysis. Student thesis, KTH, School of Chemical Science and Engineering, 2010

[10] Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A.P. FTIR Spectroscopy Characterization of Poly (Vinyl alcohol) Hydrogel with Different Hydrolysis Degree and Chemically Crosslinked with Glutaraldehyde. Mater. Sci. Eng. C 2008, 28, 539-548. https://doi.org/10.1016/j.msec.2007.10.088
https://doi.org/10.1016/j.msec.2007.10.088

[11] Kharazmi, A.; Faraji, N.; Hussin, R.M.; Saion, E.; Yunus, W.M.M.; Behzad, K. Structural, Optical, Opto-Thermal and Thermal Properties of ZnS-PVA Nanofluids Synthesized Through a Radiolytic Approach. Beilstein J. Nanotechnol. 2015, 6, 529-536. https://doi.org/10.3762/bjnano.6.55
https://doi.org/10.3762/bjnano.6.55