Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Decontamination of Biological Agents in Wastewater through Synergetic Oxidative Methods as an Effective Approach for Safeguarding Public Health and Aquatic Ecosystems

Anatoly Grytsenko1, Inna Tykha2, Iryna Zinchenko1, Olena Babich3, Iryna Yermakovych4
Affiliation: 
1 Scientific research institution "Ukrainian Scientific Research Institute of Ecological Problems", 6 Bakulina St., Kharkiv, 61166, Ukraine 2 State Institution "V. Danilevsky Institute for Endocrine Pathology Problems of the NAMS of Ukraine", 10 Alchevskikh St., Kharkiv, 61002, Ukraine 3 O.M. Beketov National University of Urban Economy in Kharkiv, 17 Marshal Bazhanov St., Kharkiv, 61002, Ukraine 4 Volodymyr Dahl East Ukrainian National University, 17 Ioanna Pavla II St., Kyiv, 01042, Ukraine grytsenko.0102@gmail.com
DOI: 
https://doi.org/10.23939/chcht18.03.426
AttachmentSize
PDF icon full_text.pdf407.4 KB
Abstract: 
We employed a highly concentrated model of wastewater to conduct our research, accurately mimicking the composition of wastewater generated by milk processing enterprises. Wastewater contained milk protein, carbohydrates, and whey sugars. Domestic wastewater, which served as a source of indicator fecal microorganisms, was added to them. The water purification and disinfection scheme involved treating a model wastewater using the biosorption method with an immobilized biocenosis in a laboratory installation, followed by further purification and disinfection in a decontamination tank. In comparison, we assessed the degree of microorganism elimination using distinct methods such as ozonation, hydrogen peroxide treatment, and combination of О3/Н2О2. It has been demonstrated that model wastewater, purified and disinfected using the AOPs method, also contains dissolved oxygen, which is non-toxic to aquatic microbiota.
References: 

[1] Adel, K.; Salah Eddine, H.; Abdelhek, M. Removal of Phenol from Water Using an Activated Carbon Prepared from Juniperus Thurifera Tree. Chem. Chem. Technol. 2023, 17, 636–645. https://doi.org/10.23939/chcht17.03.636
[2] Vystavna, Y.; Schmidt, SI.; Diadin, D.; Rossi, PM.; Vergeles, Y.; Erostate, M.; Yermakovych, I.; Yakovlev, V.; Knöller, K.; Vadillo, I. Multi-tracing of Recharge Seasonality and Contamination in Groundwater: A Tool for Urban Water Resource Management. Water Res. 2019, 161, 413–422. https://doi.org/10.1016/j.watres.2019.06.028
[3] Baltrėnaitė-Gedienė, E.; Iurchenko, V.; Lebedeva, E.; Melnikova, O.; Kosenko, N. Treatment of Real Wastewater from Organic Contaminants by Using Biochar. MSF 2021, 1038, 258–265. https://doi:10.4028/www.scientific.net/MSF.1038.258.
[4] Malovanyy, M.; Palamarchuk, O.; Trach, I.; Petruk, H.; Sakalova, H.; Soloviy, Kh., Vasylinych, T., Tymchuk, I., Vronska, N. Adsorption Extraction of Chromium Ions (III) with the Help of Bentonite Clays. J. Ecol. Eng. 2020, 21, 178–185. https://doi.org/10.12911/22998993/125545
[5] Ptashnyk, V.; Bordun, I.; Malovanyy, M., Chabecki, P.; Pieshkov, T. The Change of Structural Parameters of Nanoporous Activated Carbons under the Influence of Ultrasonic Radiation. Appl. Nanosci. 2020, 10, 4891–4899. https://doi.org/10.1007/s13204-020-01393-z
[6] Malovanyy, M.; Petrushka, K.; Petrushka, I. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chem. Chem. Technol. 2019, 13, 372–376. https://doi.org/10.23939/chcht13.03.372
[7] Tulaydan, Y.; Malovanyy, M.; Kochubei, V.; Sakalova, H. Treatment of High-Strength Wastewater from Ammonium and Phosphate Ions with the Obtaining of Struvite. Chem. Chem. Technol. 2017, 11, 463–468. https://doi.org /10.23939/chcht11.04.463
[8] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies for the Growth Substrate Based on the Man-Made Waste - Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps and Quarries. Int. J. Foresight Innov. Policy. 2020, 14, 248–263. https://doi.org/10.1504/IJFIP.2020.111239
[9] Malovanyy, M.; Moroz, O.; Popovich, V.; Kopiy, M.; Tymchuk, I.; Sereda, A.; Krusir, G.; Soloviy, Ch. The Perspective of Using the «Open Biological Conveyor» Method for Purifying Landfill Filtrates. Environ. Nanotechnol. Mon. Manag. 2021, 16, 100611. https://doi.org/10.1016/j.enmm.2021.100611
[10] Ministerstvo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy. Nakaz 12.12.2018 № 341 Pro zatverdzhennia Poriadku povtornoho vykorystannia ochyshchenykh stichnykh vod ta osadu za umovy dotrymannia normatyviv hranychno dopustymykh kontsentratsii zabrudniuiuchykh rechovyn, 2019. https://zakon.rada.gov.ua/laws/show/z0075-19#Text (accessed 2023-12-18).
[11] DSTU 7369:2013 Stichni vody. Vymohy do stichnykh vod i yikhnikh osadiv dlia zroshuvannia ta udobriuvannia, 2013. http://online.budstandart.com/ua/catalog/doc-page?id_doc=67921 (accessed 2023-12-18).
[12] DBN V.2.5-75:2013 Kanalizatsiia. Zovnishni merezhi ta sporudy. Osnovni polozhennia proektuvannia, 2013. https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=54057 (accessed 2023-12-18).
[13] Sukhatskiy, Yu; Znak, Z.; Zin, O.; Chupinskyi, D. Ultrasonic Cavitation in Wastewater Treatment from Methyl Orange Azo Dye. Chem. Chem. Technol. 2021, 15, 284–290. https://doi.org/10.23939/chcht15.02.284
[14] Rekhate, C.V.; Srivastava, J. K. Recent Advances in Ozone-Based Advanced Oxidation Processes for Treatment of Wastewater - A Review. Chem. Eng. J. Adv. 2020, 3, 100031. https://doi.org/10.1016/j.ceja.2020.100031
[15] Krystynik, P. Advanced Oxidation Processes (AOPs) – Utilization of Hydroxyl Radical and Singlet Oxygen. Biochemistry 2022, 336. https://doi.org/10.5772/intechopen.98189
[16] Petrenko, N.F.; Mokiienko, A.V.; Platov, S.M. Conditions of Drinking Water Supply in Ukraine. Aktualni problemy transportnoi medytsyny 2018, 4, 64–74. https://doi.org/10.5281/zenodo.2525778
[17] Oturan, M.A.; Aaron, J.J. Advanced Oxidation Processes in Water. Wastewater Treatment: Principles and Applications: A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. https://doi.org/10.1080/10643389.2013.829765
[18] Cardoso, I.M.F.; Cardoso, R.M.F.; Esteves da Silva, J.C.G. Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment. Nanomaterials (Basel) 2021, 11, 2045. https://doi.org/10.3390/nano11082045
[19] Samoilenko, N.; Yermakovych, I.; Bairachnyi, V.; Baranova, A. Implementation of the Method of Electrochemical Destruction during Disposal of Pharmaceutical Glass Waste. East.-Eur. J. Enterp. Technol. 2017, 5 (10-89), 39–45. https://doi.org/10.15587/1729-4061.2017.109826
[20] Hoigné, J.; Bader, H. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water—II: Dissociating Organic Compounds. Water Res. 1983, 17, 185–194. https://doi.org/10.1016/0043-1354(83)90099-4
[21] Bianco, A.; Polo-López, M.I.; Fernández-Ibáñez, P.; Brigante, M.; Mailhot, G. Disinfection of Water Inoculated with Enterococcus faecalis Using Solar / Fe(III)EDDS-H2O2 or S2O82− Process. Water Res. 2017, 118, 249–260. https://doi.org/10.1016/j.watres.2017.03.061
[22] Ikehata, K.; Li, Y. Ozone-based Processes. Chapter 5. In Advanced Oxidation Processes for Wastewater Treatment. Emerging Green Chemical Technology; Ameta, S.C.; Ameta, R., Eds.; Elsevier S&T Book, Academic Press:Cambridge, MA, 2018; рр. 115–134. https://doi.org/10.1016/B978-0-12-810499-6.00005-X
[23] Sommer, R.; Pribil, W.; Pfleger, S.; Haider, T.; Werderitsch, M.; Gehringer, P. Microbicidal Efficacy of an Advanced Oxidation Process Using Ozone/Hydrogen Peroxide in Water Treatment. Water Sci. Technol. 2004, 50, 159–164. https://doi.org/10.2166/wst.2004.0047
[24] Petrenko, N.F.; Mokienko, A.V.; Platov, S.M. New Technologies of Water Oxidation and Disinfection Advanced Oxidation Processes (Literature Review). Aktualni problemy transportnoi medytsyny 2018, 2, 22–38. https://doi.org/10.5281/zenodo.1319485
[25] Xiao, R.; Liu, K.; Bai, L.; Minakata, D.; Seo, Y.; Goktas, R. K.; Dionysiou, D.; Tang, C.; Wei, Z.; Spinney, R. Inactivation of Pathogenic Microorganisms by Sulfate Radical: Present and Future. Chem. Eng. J. 2019, 371, 222–232. https://doi.org/10.1016/j.cej.2019.03.296
[26] Chen, Y.; Duan, X.; Zhou, X.; Wang, R.; Wang, S.; Ren, N.; Ho, S. Advanced Oxidation Processes for Water Disinfection: Features, Mechanisms and Prospects. Chem. Eng. J. 2021, 409, 128207. https://doi.org/10.1016/j.cej.2020.128207
[27] Iurchenko, V.; Tsytlishvili, K; Malovanyy, M. Wastewater Treatment by Conversion of Nitrogen-Containing Pollution by Immobilized Microbiocenosis in a Biodisk Installation. Ecological Questions 2022, 33, 21–30. https://doi.org/10.12775/EQ.2022.017
[28] DSTU ISO 9308-1:2005 Yakist vody. Vyiavliannia ta pidrakhuvannia Escherichia coli ta koliformnykh bakterii. Chastyna 1. Metod membrannoho filtruvannia (ISO 9308-1:2000, IDT), 2005. https://online.budstandart.com/ua/catalog/doc-page?id_doc=91147 (accessed 2023-12-18).
[29] DSTU ISO 8199:2009. Yakist vody. Zahalni nastanovy shchodo pidrakhovuvannia mikroorhanizmiv u kulturi (ISO 8199:2005, IDT), 2009. https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=58530 (accessed 2023-12-18).
[30] MV 10.2.1-113-2005 Sanitarno-mikrobiolohichnyi kontrol yakosti pytnoi vody, 2005. https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=59575 (accessed 2023-12-18)
[31] Kabinet ministriv Ukrainy. Postanova pro zatverdzhennia Pravyl okhorony poverkhnevykh vod vid zabrudnennia zvorotnymy vodamy, 2013. https://zakon.rada.gov.ua/laws/show/465-99-%D0%BF#Text, (accessed 2023-12-18)
[32] Faroog, S.; Tiraoui, C. Сritical Review on the Inactivation of Surface and Airborne SARS-CoV-2 Virus by Ozone Gas. Crit. Rev. Environ. Sci. Technol. 2023, 53, 87–109. https://doi.org/10.1080/10643389.2022.2043094