Decontamination of Biological Agents in Wastewater through Synergetic Oxidative Methods as an Effective Approach for Safeguarding Public Health and Aquatic Ecosystems
Attachment | Size |
---|---|
full_text.pdf | 407.4 KB |
[1] Adel, K.; Salah Eddine, H.; Abdelhek, M. Removal of Phenol from Water Using an Activated Carbon Prepared from Juniperus Thurifera Tree. Chem. Chem. Technol. 2023, 17, 636-645. https://doi.org/10.23939/chcht17.03.636
https://doi.org/10.23939/chcht17.03.636
[2] Vystavna, Y.; Schmidt, SI.; Diadin, D.; Rossi, PM.; Vergeles, Y.; Erostate, M.; Yermakovych, I.; Yakovlev, V.; Knöller, K.; Vadillo, I. Multi-tracing of Recharge Seasonality and Contamination in Groundwater: A Tool for Urban Water Resource Management. Water Res. 2019, 161, 413-422. https://doi.org/10.1016/j.watres.2019.06.028
https://doi.org/10.1016/j.watres.2019.06.028
[3] Baltrėnaitė-Gedienė, E.; Iurchenko, V.; Lebedeva, E.; Melnikova, O.; Kosenko, N. Treatment of Real Wastewater from Organic Contaminants by Using Biochar. MSF 2021, 1038, 258-265. https://doi:10.4028/www.scientific.net/MSF.1038.258.
https://doi.org/10.4028/www.scientific.net/MSF.1038.258
[4] Malovanyy, M.; Palamarchuk, O.; Trach, I.; Petruk, H.; Sakalova, H.; Soloviy, Kh., Vasylinych, T., Tymchuk, I., Vronska, N. Adsorption Extraction of Chromium Ions (III) with the Help of Bentonite Clays. J. Ecol. Eng. 2020, 21, 178-185. https://doi.org/10.12911/22998993/125545
https://doi.org/10.12911/22998993/125545
[5] Ptashnyk, V.; Bordun, I.; Malovanyy, M., Chabecki, P.; Pieshkov, T. The Change of Structural Parameters of Nanoporous Activated Carbons under the Influence of Ultrasonic Radiation. Appl. Nanosci. 2020, 10, 4891-4899. https://doi.org/10.1007/s13204-020-01393-z
https://doi.org/10.1007/s13204-020-01393-z
[6] Malovanyy, M.; Petrushka, K.; Petrushka, I. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chem. Chem. Technol. 2019, 13, 372-376. https://doi.org/10.23939/chcht13.03.372
https://doi.org/10.23939/chcht13.03.372
[7] Tulaydan, Y.; Malovanyy, M.; Kochubei, V.; Sakalova, H. Treatment of High-Strength Wastewater from Ammonium and Phosphate Ions with the Obtaining of Struvite. Chem. Chem. Technol. 2017, 11, 463-468. https://doi.org /10.23939/chcht11.04.463
https://doi.org/10.23939/chcht11.04.463
[8] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies for the Growth Substrate Based on the Man-Made Waste - Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps and Quarries. Int. J. Foresight Innov. Policy. 2020, 14, 248-263. https://doi.org/10.1504/IJFIP.2020.111239
https://doi.org/10.1504/IJFIP.2020.111239
[9] Malovanyy, M.; Moroz, O.; Popovich, V.; Kopiy, M.; Tymchuk, I.; Sereda, A.; Krusir, G.; Soloviy, Ch. The Perspective of Using the «Open Biological Conveyor» Method for Purifying Landfill Filtrates. Environ. Nanotechnol. Mon. Manag. 2021, 16, 100611. https://doi.org/10.1016/j.enmm.2021.100611
https://doi.org/10.1016/j.enmm.2021.100611
[10] Ministerstvo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy. Nakaz 12.12.2018 № 341 Pro zatverdzhennia Poriadku povtornoho vykorystannia ochyshchenykh stichnykh vod ta osadu za umovy dotrymannia normatyviv hranychno dopustymykh kontsentratsii zabrudniuiuchykh rechovyn, 2019. https://zakon.rada.gov.ua/laws/show/z0075-19#Text (accessed 2023-12-18).
[11] DSTU 7369:2013 Stichni vody. Vymohy do stichnykh vod i yikhnikh osadiv dlia zroshuvannia ta udobriuvannia, 2013. http://online.budstandart.com/ua/catalog/doc-page?id_doc=67921 (accessed 2023-12-18).
[12] DBN V.2.5-75:2013 Kanalizatsiia. Zovnishni merezhi ta sporudy. Osnovni polozhennia proektuvannia, 2013. https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=54057 (accessed 2023-12-18).
[13] Sukhatskiy, Yu; Znak, Z.; Zin, O.; Chupinskyi, D. Ultrasonic Cavitation in Wastewater Treatment from Methyl Orange Azo Dye. Chem. Chem. Technol. 2021, 15, 284-290. https://doi.org/10.23939/chcht15.02.284
https://doi.org/10.23939/chcht15.02.284
[14] Rekhate, C.V.; Srivastava, J. K. Recent Advances in Ozone-Based Advanced Oxidation Processes for Treatment of Wastewater - A Review. Chem. Eng. J. Adv. 2020, 3, 100031. https://doi.org/10.1016/j.ceja.2020.100031
https://doi.org/10.1016/j.ceja.2020.100031
[15] Krystynik, P. Advanced Oxidation Processes (AOPs) - Utilization of Hydroxyl Radical and Singlet Oxygen. Biochemistry 2022, 336. https://doi.org/10.5772/intechopen.98189
https://doi.org/10.5772/intechopen.98189
[16] Petrenko, N.F.; Mokiienko, A.V.; Platov, S.M. Conditions of Drinking Water Supply in Ukraine. Aktualni problemy transportnoi medytsyny 2018, 4, 64-74. https://doi.org/10.5281/zenodo.2525778
[17] Oturan, M.A.; Aaron, J.J. Advanced Oxidation Processes in Water. Wastewater Treatment: Principles and Applications: A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577-2641. https://doi.org/10.1080/10643389.2013.829765
https://doi.org/10.1080/10643389.2013.829765
[18] Cardoso, I.M.F.; Cardoso, R.M.F.; Esteves da Silva, J.C.G. Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment. Nanomaterials (Basel) 2021, 11, 2045. https://doi.org/10.3390/nano11082045
https://doi.org/10.3390/nano11082045
[19] Samoilenko, N.; Yermakovych, I.; Bairachnyi, V.; Baranova, A. Implementation of the Method of Electrochemical Destruction during Disposal of Pharmaceutical Glass Waste. East.-Eur. J. Enterp. Technol. 2017, 5 (10-89), 39-45. https://doi.org/10.15587/1729-4061.2017.109826
https://doi.org/10.15587/1729-4061.2017.109826
[20] Hoigné, J.; Bader, H. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water-II: Dissociating Organic Compounds. Water Res. 1983, 17, 185-194. https://doi.org/10.1016/0043-1354(83)90099-4
https://doi.org/10.1016/0043-1354(83)90099-4
[21] Bianco, A.; Polo-López, M.I.; Fernández-Ibáñez, P.; Brigante, M.; Mailhot, G. Disinfection of Water Inoculated with Enterococcus faecalis Using Solar / Fe(III)EDDS-H2O2 or S2O82− Process. Water Res. 2017, 118, 249-260. https://doi.org/10.1016/j.watres.2017.03.061
https://doi.org/10.1016/j.watres.2017.03.061
[22] Ikehata, K.; Li, Y. Ozone-based Processes. Chapter 5. In Advanced Oxidation Processes for Wastewater Treatment. Emerging Green Chemical Technology; Ameta, S.C.; Ameta, R., Eds.; Elsevier S&T Book, Academic Press:Cambridge, MA, 2018; рр. 115-134. https://doi.org/10.1016/B978-0-12-810499-6.00005-X
https://doi.org/10.1016/B978-0-12-810499-6.00005-X
[23] Sommer, R.; Pribil, W.; Pfleger, S.; Haider, T.; Werderitsch, M.; Gehringer, P. Microbicidal Efficacy of an Advanced Oxidation Process Using Ozone/Hydrogen Peroxide in Water Treatment. Water Sci. Technol. 2004, 50, 159-164. https://doi.org/10.2166/wst.2004.0047
https://doi.org/10.2166/wst.2004.0047
[24] Petrenko, N.F.; Mokienko, A.V.; Platov, S.M. New Technologies of Water Oxidation and Disinfection Advanced Oxidation Processes (Literature Review). Aktualni problemy transportnoi medytsyny 2018, 2, 22-38. https://doi.org/10.5281/zenodo.1319485
[25] Xiao, R.; Liu, K.; Bai, L.; Minakata, D.; Seo, Y.; Goktas, R. K.; Dionysiou, D.; Tang, C.; Wei, Z.; Spinney, R. Inactivation of Pathogenic Microorganisms by Sulfate Radical: Present and Future. Chem. Eng. J. 2019, 371, 222-232. https://doi.org/10.1016/j.cej.2019.03.296
https://doi.org/10.1016/j.cej.2019.03.296
[26] Chen, Y.; Duan, X.; Zhou, X.; Wang, R.; Wang, S.; Ren, N.; Ho, S. Advanced Oxidation Processes for Water Disinfection: Features, Mechanisms and Prospects. Chem. Eng. J. 2021, 409, 128207. https://doi.org/10.1016/j.cej.2020.128207
https://doi.org/10.1016/j.cej.2020.128207
[27] Iurchenko, V.; Tsytlishvili, K; Malovanyy, M. Wastewater Treatment by Conversion of Nitrogen-Containing Pollution by Immobilized Microbiocenosis in a Biodisk Installation. Ecological Questions 2022, 33, 21-30. https://doi.org/10.12775/EQ.2022.017
https://doi.org/10.12775/EQ.2022.017
[28] DSTU ISO 9308-1:2005 Yakist vody. Vyiavliannia ta pidrakhuvannia Escherichia coli ta koliformnykh bakterii. Chastyna 1. Metod membrannoho filtruvannia (ISO 9308-1:2000, IDT), 2005. https://online.budstandart.com/ua/catalog/doc-page?id_doc=91147 (accessed 2023-12-18).
[29] DSTU ISO 8199:2009. Yakist vody. Zahalni nastanovy shchodo pidrakhovuvannia mikroorhanizmiv u kulturi (ISO 8199:2005, IDT), 2009. https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=58530 (accessed 2023-12-18).
[30] MV 10.2.1-113-2005 Sanitarno-mikrobiolohichnyi kontrol yakosti pytnoi vody, 2005. https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=59575 (accessed 2023-12-18)
[31] Kabinet ministriv Ukrainy. Postanova pro zatverdzhennia Pravyl okhorony poverkhnevykh vod vid zabrudnennia zvorotnymy vodamy, 2013. https://zakon.rada.gov.ua/laws/show/465-99-%D0%BF#Text, (accessed 2023-12-18)
[32] Faroog, S.; Tiraoui, C. Сritical Review on the Inactivation of Surface and Airborne SARS-CoV-2 Virus by Ozone Gas. Crit. Rev. Environ. Sci. Technol. 2023, 53, 87-109. https://doi.org/10.1080/10643389.2022.2043094
https://doi.org/10.1080/10643389.2022.2043094