Corrosion-Electrochemical Behaviour of Low-Alloy Steel in Alkaline Media

Antonina Maizelis, Boris Bairachniy
Affiliation: 
1 National Technical University “Kharkiv Polytechnic Institute” 2, Kyrpychova St., 61002 Kharkiv, Ukraine a.maizelis@gmail.com
DOI: 
https://doi.org/10.23939/chcht12.02.258
AttachmentSize
PDF icon full_text.pdf410.07 KB
Abstract: 
The authors demonstrated that low-alloy chrome-molybdenum-vanadium 12Cr1MoV steel has more positive open circuit potential and lower hydrogen evolution overvoltage in concentrated alkaline solution, compared to ordinary-quality St3 steel. After 1100 A∙h∙m-2 charge passing, 12Cr1MoV anodic dissolution rate becomes lower than St3 dissolution rate. It does not increase with current density increase.
References: 

[1] Pastowski A., Grube T.: Energy Policy, 2009, 38, 5382. https://doi.org/10.1016/j.enpol.2009.11.058
[2] Zeng K., Zhang D.: Prog. Energ. Combust., 2010, 36, 307. https://doi.org/10.1016/j.pecs.2009.11.002
[3] Ursua A., Gandia L., Sanchis P.: Proceed. IEEE, 2012, 100, 410. https://doi.org/10.1109/JPROC.2011.2156750
[4] Wang M., Wang Z., Gong Xu., Gou Z.: Renew. Sust. Energ. Rev., 2014, 29, 573. https://doi.org/10.1016/j.rser.2013.08.090
[5] Mazloomi K., Sulaiman N., Moayedi H.: Int. J. Electrochem. Sci., 2012, 7, 3314.
[6] Garat A., Gras J.: Int. J. Hydrogen Energ., 1983, 8, 681.
[7] Soares D., Teschke O., Torriani I.: J. Electrochem. Soc., 1992, 139, 98. https://doi.org/10.1149/1.2069207
[8] Brossard L., Huot J.-Y.: J. Appl. Electrochem., 1991, 21, 508. https://doi.org/10.1007/BF01018603
[9] Huot J.-Y., Brossard L.: J. Appl. Electrochem., 1990, 20, 281. https://doi.org/10.1007/BF01033606
[10] Stemp M., Thorpe S., Kirk D.: Electrochemical Surface Science of Hydrogen Adsorption and Absorption [in:] Jerkiewicz G., Marcus P. (Eds.), The Electrochemical Society Proceedings Series, The Electrochemical Society, Pennington (NJ) 1997.
[11] Abouatallah R., Kirk D., Thorpe S., Graydon G.: Electrochim. Acta, 2001, 47, 613. https://doi.org/10.1016/S0013-4686(01)00777-0
[12] Gandia L., Arzamedi G., Diéguez P. et al.: Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam 2013.
[13] Jakimenko L., Modylevskaja I., Tkachek Z.: Electroliz Vody. Khimia, Moskva 1970.
[14] Millet P., Grigoriev S.: Water Electrolysis Technologies [in:] Brostow W. (Ed.).: Renewable Hydrogen Technologies. Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam 2013, 19-42.
[15] Hall D.: J. Electrochem. Soc., 1985, 132(2), 41C. https://doi.org/10.1149/1.2113856
[16] Manabe A., Kashiwase M., Hashimoto T. et al.: Electrochim. Acta, 2013, 100, 249. https://doi.org/10.1016/j.electacta.2012.12.105
[17] Maizelis A., Bairachniy B.: Nanoscale Res. Lett., 2017, 12, 119. https://doi.org/10.1186/s11671-017-1902-6
[18] Maizelis A., Bairachniy B., Trubnikova L. et al.: Funct. Mat., 2012, 19, 238.