Comparative Characteristics of Polymethacrylic Acid Hydrogel Sorption Activity in Relation to Lanthanum Ions in Different Intergel Systems

Talkybek Jumadilov1, Zamira Malimbayeva2, Leila Yskak2, Oleg Suberlyak3, Ruslan Kondaurov1, Aldan Imangazy1, Laura Agibayeva4, Auez Akimov1, Khuangul Khimersen1, Akerke Zhuzbayeva1
Affiliation: 
1 JSC «Institute of Chemical Sciences after A.B. Bekturov», 106, Sh. Valikhanov St., 050010 Almaty, the Republic of Kazakhstan; 2 Kazakh National Women’s Teacher Training University 99, Aiteke Bi St., 050000 Almaty, the Republic of Kazakhstan; 3 Lviv Polytechnic National University, Lviv, Ukraine 12, Bandera St., 79013 Lviv, Ukraine; 4 Al-Farabi Kazakh National University, 71, Al-Farabi Ave, 050001Almaty, the Republic of Kazakhstan r-kondaurov@mai.ru
DOI: 
https://doi.org/10.23939/chcht16.03.418
AttachmentSize
PDF icon full_text.pdf433.63 KB
Abstract: 
Phenomena of remote interaction in intergel systems polymethacrylic acid hydrogel – poly-4-vinylpyridine hydrogel (hPMAA-hP4VP) and polymethacrylic acid hydrogel – poly-2-methyl-5-vinylpyridine hydrogel (hPMAA-hP2M5VP) have been studied. It was found that there is a decrease of specific electric conductivity, pH and swelling degree of PMAA, P4VP, P2M5VP hydrogels during lanthanum ions sorption by the intergel systems. Significant increase of sorption properties (up to 30 %) in intergel systems comparatively with individual hydrogels of PMAA, P4VP, P2M5VP points to the fact of high ionization during mutual activation of the polymers. Maximum sorption of lanthanum ions occurs at the ratios of 17%hPMAA:83%hP4VP and 50%hPMAA:50%hP2M5VP. Data on obtained IR spectra evidence to the sorption of the rare-earth metal by these intergel systems. The obtained results show a significant importance of possible application of intregel systems based on rare-crosslinked polymer hydrogels of acid and basic nature for creation of new innovative sorption technologies in hydrometallurgy.
References: 

[1] Alexandratos, S.D. Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Ind. Eng. Chem. Res. 2009, 48, 388-389. https://doi.org/10.1021/ie801242v
https://doi.org/10.1021/ie801242v

[2] Selvi, P.; Ramasami, M.; Samuel, M.H.P.; Adaikkalam, P.; Srinivasan, G.N. Recovery of Gallium from Bayer Liquor Using Chelating Resins in Fixed-Bed Columns. Ind. Eng. Chem. Res. 2004, 43, 2216-2221. https://doi.org/10.1021/ie030695n
https://doi.org/10.1021/ie030695n

[3] François, D.; Thomas, V.A. Ion Exchangers. In Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2008.

[4] Birnhack, L.; Keller, O.; Tang, S.C.N.; Fridman-Bishop, N.; Lahav, O. A Membrane-Based Recycling Process for Minimizing Environmental Effects Inflicted by Ion-Exchange Softening Applications. Sep. Pur. Tech. 2019, 223, 24-30. https://doi.org/10.1016/j.seppur.2019.04.056
https://doi.org/10.1016/j.seppur.2019.04.056

[5] Ergozhin, E.; Menligaziyev, E. Polifunktsionalnyie Ionoobmenniki; Nauka: Moskwa, 1986.

[6] Mulder, M. Basic Principles of Membrane Technology, 2nd ed.; Springer Netherlands, 2006. https://doi.org/10.1007/978-94-009-1766-8
https://doi.org/10.1007/978-94-009-1766-8

[7] Malika, C.; Kenza, A.; Yasmine, A.O.; Abdeltif, A.; Aicha, B. Removal of Nitrate from Drinking Water by Adsorption Using Ion Exchange Resin. Desal. Wat. Treat. 2010, 24, 109-116. https://doi.org/10.5004/dwt.2010.1251
https://doi.org/10.5004/dwt.2010.1251

[8] Rafati, L.; Mahvi, A.H.; Asgari, A.R.; Hosseini, S.S. Removal of Chromium (VI) from Aqueous Solutions Using Lewatit FO36 Nano Ion Exchange Resin. Int. J. Envir. Sci. Tech. 2010, 7, 147-156. https://doi.org/10.1007/BF03326126
https://doi.org/10.1007/BF03326126

[9] Tabushi, I.; Kobuke, Y.; Nakayama, N.; Aoki, T.; Yoshizawa, A. Chelating Resin Functionalized with Dithiocarbamate for the Recovery of Uranium from Seawater. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 445-448. https://doi.org/10.1021/i300015a023
https://doi.org/10.1021/i300015a023

[10] Kawamura, Y.; Mitsuhashi, M.; Tanibe, H.; Yoshida, H. Adsorption of Metal Ions on Polyaminated Highly Porous Chitosan Chelating Resin. Ind. Eng. Chem. Res. 1993, 32, 386-391. https://doi.org/10.1021/ie00014a015
https://doi.org/10.1021/ie00014a015

[11] Guibal, E.; Milot, C.; Tobin, J.M. Metal-Anion Sorption by Chitosan Beads:  Equilibrium and Kinetic Studies. Ind. Eng. Chem. Res. 1998, 37, 1454-1463. https://doi.org/10.1021/ie9703954
https://doi.org/10.1021/ie9703954

[12] Alexandratos, S.D.; Hussain, L.A. Bifunctionality as a Means of Enhancing Complexation Kinetics in Selective Ion Exchange Resins. Ind. Eng. Chem. Res. 1995, 34, 251-254. https://doi.org/10.1021/ie00040a026
https://doi.org/10.1021/ie00040a026

[13] Kabay, N.; Demircioglu, M.; Yayli, S.; Günay, E.; Yüksel, M.; Saǧlam, M.; Streat, M. Recovery of Uranium from Phosphoric Acid Solutions Using Chelating Ion-Exchange Resins. Ind. Eng. Chem. Res. 1998, 37, 1983-1990. https://doi.org/10.1021/ie970518k
https://doi.org/10.1021/ie970518k

[14] Beatty, S.T.; Fischer, R.J.; Hagers, D.L.; Rosenberg, E. A Comparative Study of the Removal of Heavy Metal Ions from Water Using a Silica−Polyamine Composite and a Polystyrene Chelator Resin. Ind. Eng. Chem. Res. 1999, 38, 4402-4408. https://doi.org/10.1021/ie9903386
https://doi.org/10.1021/ie9903386

[15] Di Natale, F.; Lancia, A. Recovery of Tungstate from Aqueous Solutions by Ion Exchange. Ind. Eng. Chem. Res. 2007, 46, 6777-6782. https://doi.org/10.1021/ie061691w
https://doi.org/10.1021/ie061691w

[16] Kiefer, R., Holl, W.H. Sorption of Heavy Metals onto Selective Ion-Exchange Resins with Aminophosphonate Functional Groups. Ind. Eng. Chem. Res., 2001, 40, 4570-4576. https://doi.org/10.1021/ie010182l
https://doi.org/10.1021/ie010182l

[17] Xiong, Z.; Zhao, D.; Harper, W.F. Sorption and Desorption of Perchlorate with Various Classes of Ion Exchangers:  A Comparative Study. Ind. Eng. Chem. Res. 2007, 46, 9213-9222. https://doi.org/10.1021/ie0702025
https://doi.org/10.1021/ie0702025

[18] Maslov, O.D.; Tserenpil, Sh.; Norov, N.; Gustova, M.V.; Filippov, M.F.; Belov, A.G.; Altangerel, M.; Enhbat, N. Uranium Recovery from Coal ash Dumps of Mongolia. Sol. Fuel Chem. 2010, 44, 433-438. https://doi.org/10.3103/S0361521910060133
https://doi.org/10.3103/S0361521910060133

[19 Ladola, Y.S.; Kadam, S.V.; Hareendran, K.N.; Chowdhury, S.; Biswas, S.; Roy, S.B.; Pandit, A.B. Analysis of Uranium Leaching Process and Effect of Cake Washing on Uranium Recovery. J. Mat. Sci. Eng. Adv. Tech. 2014, 10, 63-75.

[20] Cheru, M.S., del Rosario, A.V.; Yimam, A.; Tadesse, B.; Berhe, G.G. Hydrometallurgical Removal of Uranium and Thorium from Ethiopian Tantalite Ore. Phys. Prob. Min. Proc., 2019, 55, 448-457. https://doi.org/10.5277/ppmp18153

[21] Horkay, F.; Basser, P.J.; Hecht, A.-M.; Geissler, E. Structural Investigations of a Neutralized Polyelectrolyte Gel and an Associating Neutral Hydrogel. Polymer 2005, 46, 4242-4247. https://doi.org/10.1016/j.polymer.2005.02.054
https://doi.org/10.1016/j.polymer.2005.02.054

[22] Kondrashova, Yu.; Safronov, A. Proceedings of 16th Russian Youth Conference Devoted to 85 Years of Birth of Prof. Kochergin V.P. Russia, Ekaterinburg, 2006; p 232.

[23] Kim, S.J.; Yoon, S.G.; Kim, S.I. Effect of the Water State on the Electrical Bending Behavior of Chitosan/Poly(diallyldimethylammonium Chloride) Hydrogels in NaCl Solutions. J. Polym. Sci. B 2004, 42, 914-921. https://doi.org/10.1002/polb.10778
https://doi.org/10.1002/polb.10778

[24] Chen, L.; Yu, X.; Li, Q. Reswelling Behavior of Polycation Hydrogels Carrying Charges on the Chain Backbone by Two-Step Surfactant Bindings. J. Appl. Polym. Sci. 2006, 102, 3791-3794. https://doi.org/10.1002/app.24747
https://doi.org/10.1002/app.24747

[25] Sitnikova, N.; Malyshkina, I.; Gavrilova, N.; Philippova, O. Proceedings of 4th International Symposium on Molecular Order and Mobility in Polymer Systems, Russia, St. Petersburg, 2002; p 229.

[26] Alimbekova, B.T.; Korganbayeva, Zh.K.; Himersen, H.J.; Kondaurov, R.G.; Jumadilov, T.K. Features of Polymethacrylic Acid and Poly-2-Methyl-5-Vinylpyridine Hydrogels Remote Interaction in an Aqueous Medium. J. Chem. Chem. Eng. 2014, 3, 265-269

[27] Jumadilov, T. Mutual Activation and High Selectivity of Polymeric Structures in Intergel Systems. Abstracts of Papers of Third International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, September 1-4, 2013

Iv. Javakhishvili Tbilisi State University: Tbilisi, 2013, p 43.

[28] Jumadilov, T. Electrochemical and Conformational Behaviour of Intergel Systems Based on the Rare Crosslinked Polyacid and Polyvynilpyrydines. Conference of Lithuanian Chemical Society "Chemistry and Chemical Technology", Lithuania, Kaunas, 2014; pp 226-229.

[29] Alimbekova, B.T.; Jumadilov, T.K.; Korganbayeva, Zh.K. Some Features of Polymer Hydrogels Interaction with Low Molecular Salts. Bull. d'EUROTALENT-FIDJIP 2013, 5, 28-32.

[30] Erzhet, B.; Jumadilov, T.K.; Korganbayeva, ZhK. Electrochemical and Volume-Gravimetric Properties of Intergel System Based on Polyacrylic Acid and Poly-4-Vinylpyridine Hydrogels. Bull. d'EUROTALENT-FIDJIP 2013, 5, 41-45.

[31] Jumadilov, T.; Kaldayeva, S.; Kondaurov, R.; Erzhan, B.; Erzhet, B. Mutual Activation and High Selectivity of Polymeric Structures in Intergel Systems. In High Performance Polymers for Engineering Based Composites; CRC Press: Boca Raton, 2015; pp 111-119.

[32] Jumadilov, T. Effect of Remote Interraction of Polymeric Hydrogels in Innovative Technology. Ind. Kazakhstan, 2011, 2, 70-72.

[33] Bekturov, E.; Suleimenov, I. Polimernie Hydrogeli; Nauka: Moskwa, 1998.

[34] Jumadilov, T.; Kondaurov, R.; Abilov, Zh.; Grazulevicius, J.V.; Akimov, A.A. Influence of Polyacrylic Acid and poly-4-Vinylpyridine Hydrogels Mutual Activation in Intergel System on their Sorption Properties in Relation to Lanthanum (III) Ions. Pol. Bul. 2017, 74, 4701-4713. https://doi.org/10.1007/s00289-017-1985-3
https://doi.org/10.1007/s00289-017-1985-3

[35] Jumadilov, T., Abilov, Zh., Kondaurov, R. Intergel Systems: Highly Effective Instruments for Rare Earth Elements Extraction from Industrial Solutions. In Chemical Engineering of Polymers. Production of Functional and Flexible Materials Composites; AAP Press: Sydney, 2017; pp 267-279. https://doi.org/10.1201/9781315365985-20
https://doi.org/10.1201/9781315365985-20

[36] Jumadilov, T.K.; Kondaurov, R.G.; Kozhabekov, S.S.; Tolegen, G.A.; Eskalieva, G.K.; Khakimzhanov, S.A. Influence of Poly-Acrylic Acid Hydrogel's Swelling Degree on Sorption Ability of Intergel System Polyacrylic Acid Hydrogel-Poly-4-vinylpyridine Hydrogel in Relation to Neodymium Ions. Chem. Tech. Met. 2018, 53, 88-93.

[37] Tereshenkova, A.A; Statkus, M.A.; Tihomirova, T.I.; Tsizin, G.I. Sorption Concentrating of Lanthanum on Modified Low-Polar Sorbents. Moscow Univ. Bull. 2013, 54, 203-209.

[38] Praktikum po Phyziko-Khimicheskim Metodam Analiza; Petruhin, O., Ed.; Khimia: Moskwa, 1987.