Cobalt Ferrite Nanocomposite as Electrochemical Sensor for The Detection of Guanine, Uric Acid and Their Mixture

Yogendra Kumar1, Vivek Sharma1, Vinod Kumar Vashistha1, Rajasekhar VSR Pullabhotla2, Dipak Kumar Das1 (pp 520-525)
Affiliation: 
1 Department of Chemistry, GLA University, Mathura, India 281406 2 Department of Chemistry, University of Zululand, South Africa deepak.das@gla.ac.in
DOI: 
https://doi.org/10.23939/chcht15.04.520
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
Cobalt ferrite nanocomposite was synthesized and characterized by analytical techniques such as FESEM, EDS and XRD. The average crystallite size was found to be in the range of 10–12 nm with a cubic structure. Further, the nanocomposite was used for the detection of guanine (GU) and uric acid (UA) and found to be an efficient electrode modifier. The lower limit of detection for GU and UA was found to be 300 nM and 400 nM, respectively
References: 

[1] Lavanya N., Sekar C., Murugan R., Ravi G.: Mater. Sci. Eng. C, 2016, 65, 278. https://doi.org/10.1016/j.msec.2016.04.033
https://doi.org/10.1016/j.msec.2016.04.033

[2] Yari A., Derki S.: Sensor Actuat. B-Chem., 2016, 227, 456. https://doi.org/10.1016/j.snb.2015.12.088
https://doi.org/10.1016/j.snb.2015.12.088

[3] Li J., Jiang J., Feng H. et al.: RSC Adv., 2016, 6, 31565. https://doi.org/10.1039/C6RA01864E
https://doi.org/10.1039/C6RA01864E

[4] Wang H., Ren F., Wang C. et al.: RSC Adv., 2014, 4, 26895. https://doi.org/10.1039/C4RA03148B
https://doi.org/10.1039/c4ra03148b

[5] Pradhan S., Das R., Biswas S. et al.: Electrochim. Acta, 2017, 238, 185. https://doi.org/10.1016/j.electacta.2017.04.023
https://doi.org/10.1016/j.electacta.2017.04.023

[6] Pradhan S., Biswas S., Das D. et al.: New J. Chem., 2018, 42, 564. https://doi.org/10.1039/C7NJ03308G
https://doi.org/10.1039/C7NJ03308G

[7] Chokkareddy R., Bhajanthri N., Redhi G.: Indian J. Chem. A, 2018, 57, 887. http://nopr.niscair.res.in/handle/123456789/44743

[8] Kumar Y., Pradhan S., Pramanik S. et al.: J. Electroanal. Chem., 2018, 830-831, 95. https://doi.org/10.1016/j.jelechem.2018.10.021
https://doi.org/10.1016/j.jelechem.2018.10.021

[9] Kumar Y., Singh P., Pramanik P., Das D.: J. Sci. Ind. Res., 2019, 78, 177. http://nopr.niscair.res.in/handle/123456789/45941

[10] Kumar Y., Pramanik P., Das D.: Heliyon, 2019, 5, e02031. https://doi.org/10.1016/j.heliyon.2019.e02031
https://doi.org/10.1016/j.heliyon.2019.e02031

[11] Sihombing K., Tamba M., Marbun W., Situmorang M.: Indian J. Chem. A, 2018, 57, 175. http://nopr.niscair.res.in/handle/123456789/43627

[12] Cullity B., Stock S.: Elements of X-ray Diffraction. Addison-Wesley, Boston 2001.

[13] Zhang X., Duan S., Xu X. et al.: Electrochim. Acta, 2011, 56, 1981. https://doi.org/10.1016/j.electacta.2010.11.048
https://doi.org/10.1016/j.electacta.2010.11.048

[14] Sun W., Liu J., Ju X. et al.: Ionics, 2013, 19, 657. https://doi.org/10.1007/s11581-012-0789-6
https://doi.org/10.1007/s11581-012-0789-6

[15] Rezaei B., Khosropour H., Ensafi A. et al.: RSC Adv., 2015, 5, 75756. https://doi.org/10.1039/C5RA15845A
https://doi.org/10.1039/C5RA15845A

[16] Yari A., Saidikhah M.: J. Electroanal. Chem., 2016, 783, 288. https://doi.org/10.1016/j.jelechem.2016.10.063
https://doi.org/10.1016/j.jelechem.2016.10.063

[17] Hui Y., Ma X., Hou X. et al.: Ionics, 2015, 21, 1751. https://doi.org/10.1007/s11581-014-1343-5
https://doi.org/10.1007/s11581-014-1343-5

[18] Jesny S., Menon S., Girish Kumar K.: RSC Adv., 2016, 6, 75741. https://doi.org/10.1039/C6RA13567F
https://doi.org/10.1039/C6RA13567F

[19] Liu X., Zhang L., Wein S. et al.: Biosens. Bioelectron., 2014, 57, 232. https://doi.org/10.1016/j.bios.2014.02.017
https://doi.org/10.1016/j.bios.2014.02.017

[20] da Cruz F., Paula F., Franco D. et al.: J. Electroanal. Chem., 2017, 806, 172. https://doi.org/10.1016/j.jelechem.2017.10.070
https://doi.org/10.1016/j.jelechem.2017.10.070

[21] Beitollahi H., GarkaniNejad F., Shakeri S.: Anal. Methods, 2017, 9, 5541. https://doi.org/10.1039/C7AY01226H
https://doi.org/10.1039/C7AY01226H