Chemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature

Ivan Saldan1, L’ubomir Orovčik2, Oksana Dobrovetska3, Oleh Bilan4, Orest Kuntyi3
Affiliation: 
1 Ivan Franko National University of Lviv, 6, Kyryla & Mefodia St., 79005 Lviv, Ukraine 2 Institute of Materials & Machine Mechanics, Slovak Academy of Sciences, 9, Dúbravská cesta, 84513 Bratislava, Slovakia 3 Lviv Polytechnic National University, 12, S. Bandery St., 79013 Lviv, Ukraine 4 Industrial Company “Autonomous Power Sources”, 2, Lvivska St., Velyki Mosty 80074, Ukraine kunty@ukr.net
DOI: 
https://doi.org/10.23939/chcht15.01.081
AttachmentSize
PDF icon full_text.pdf2.8 MB
Abstract: 
Al3Ni and Al3Ti alloys were prepared by arc melting and exposed to chemical leaching in 5M NaOH at room temperature. In case of Al3Ni alloy, Al reached phases react with the leaching solution to produce nanoporous nickel with a pore diameter in the range of ~10–20 nm. Only pure Al phase of Al3Ti alloy chemically reacts with the production of a dense wrinkled surface with a wrinkle size of ~50–100 nm.
References: 

[1] Xu Q. (Ed.): Nanoporous Materials. Synthesis and Applications. Taylor and Francis Group LLC, London 2013.
[2] Gao H., Wang J., Chen X. et al.: Nano Energy, 2018, 53, 769. https://doi.org/10.1016/j.nanoen.2018.09.007
[3] Kumar K., Preuss K., Titirici M.-M. et al.: Chem. Rev., 2017, 117, 1796. https://doi.org/10.1021/acs.chemrev.6b00505
[4] Zhu C., Du D., Eychmüller A. et al.: Chem. Rev., 2015, 115, 8896. https://doi.org/10.1021/acs.chemrev.5b00255
[5] Huang A., He Y., Zhou Y. et al.: J. Mater. Sci., 2019, 54, 949. https://doi.org/10.1007/s10853-018-2961-5
[6] Pia G., Brun M., Aymerich F. et al.: J. Mater. Sci., 2017, 52, 1106. https://doi.org/10.1007/s10853-016-0407-5
[7] Zuo X., Zhu J., Müller-Buschbaum P. et al.: Nano Energy, 2017, 31, 113. https://doi.org/10.1016/j.nanoen.2016.11.013
[8] Shepida M., Kuntyi O., Nichkalo S. et al.: Adv. Mater. Sci. Eng., 2019, 2019. https://doi.org/10.1155/2019/2629464
[9] Wafiroh S., Abdulloh A., Widati A.: Chem. Chem. Technol., 2018, 12, 229. https://doi.org/10.23939/chcht12.02.229
[10] Saldan I., Stetsiv Y., Makogon V., et al.: Chem. Chem. Technol., 2019, 13, 85. https://doi.org/10.23939/chcht13.01.085
[11] McCue I., Benn E., Gaskey B. et al.: Ann. Rev. Mater. Res., 2016, 46, 263. https://doi.org/10.1146/annurev-matsci-070115-031739
[12] Rahman Md.A., Zhu X., Wen C.: Int. J. Electrochem. Sci., 2015, 10, 3767.
[13] Zhang H., Han Z., Deng Q.: Nanomaterials, 2019, 9, 694. https://doi.org/10.3390/nano9050694
[14] Du H., Zhou C., Xie X. et al.: Int. J. Hydrogen Energy, 2017, 42, 15236. https://doi.org/10.1016/j.ijhydene.2017.04.109
[15] Hakamada M., Mabuchi M.: J. Alloys Comp., 2009, 485, 583. https://doi.org/10.1016/j.jallcom.2009.06.031
[16] Dan Z., Qin F., Sugawara Y. et al.: Intermetallics, 2012, 31, 157. https://doi.org/10.1016/j.intermet.2012.06.018
[17] Qiu H.-J., Kang J., Liu P. et al.: J. Power Sources, 2014, 247, 896. https://doi.org/10.1016/j.jpowsour.2013.08.070
[18] Wang L., Balk T.: Philosoph. Magazine Lett., 2014, 94, 573. https://doi.org/10.1080/09500839.2014.944600
[19] Sechi E., Vacca A., Mascia M. et al.: Chem. Eng. Transact., 2016, 47, 97. https://doi.org/10.3303/CET1647017
[20] Kuntyi O., Ivashkin V., Yavorskii V. et al.: Russ. J. Appl. Chem., 2007, 80, 1856. https://doi.org/10.1134/S1070427207110158
[21] Kim S., Jung H.-D., Kang M.-H. et al.: Mater. Sci. Eng. C, 2013, 33, 2808. https://doi.org/10.1016/j.msec.2013.03.011
[22] Panagiotopoulos N., Jorge A., Rebai I. et al.: Micropor. Mesopor. Mater., 2016, 222, 23. https://doi.org/10.1016/j.micromeso.2015.09.054
[23] Zhang F., Li P., Yu J. et al.: J. Mater. Res., 2017, 32, 1528. https://doi.org/10.1557/jmr.2017.19
[24] Erlebacher J., Aziz M., Karma A.: Nature, 2001, 410, 450. https://doi.org/10.1038/35068529
[25] Zhao W., Liu N., Rong J. et al.: Adv. Eng. Mater., 2017, 19, 1600866. https://doi.org/10.1002/adem.201600866
[26] Saldan I.: J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3
[27] Saldan I., Burtovyy R., Becker H.W. et al.: Int. J. Hydrogen Energy, 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002
[28] Saldan I.: Int. J. Hydrogen Energy, 2016, 41, 11201. https://doi.org/10.1016/j.ijhydene.2016.05.062
[29] Gosalawit-Utke R., Nielsen T. K., Saldan I. et al.: J. Phys. Chem. C, 2011, 115, 10903. https://doi.org/10.1021/jp2021903
[30] Miettinen J.: Calphad, 2005, 29, 40. https://doi.org/10.1016/j.calphad.2005.02.002
[31] Wang H., Reed R., Gebelin J. et al.: Calphad, 2012, 39, 21. https://doi.org/10.1016/j.calphad.2012.06.007
[32] Saldan I., Frenzel J., Shekhah O. et al.: J. Alloys Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050