The Characterization of Novel Biodegradable Blends Based on Polyhydroxybutyrate

Yulia Pankova1, Alexandr Shchegolikhin2, Alexey Iordanskii1, Anna Zhulkina1, Anatoliy Ol’khov2 and Gennady Zaikov3
1 N. Semenov’s Institute of Chemical Physics, Russian Academy of Sciencis, Moscow, Russia; 2 M. Lomonosov’s Academy of Fine Chemical Technology, Moscow, Russia 3 N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina str., 119991 Moscow, Russia;
PDF icon full_text.pdf290.2 KB
The present paper focuses on the study of novel blends based on poly(3-hydroxybutyrate) (PHB) and polymers with different hydrophilicity (LDPE and PA). Polymer blends were produced from five ratios of PHB/LDPE in order to regulate the resistance to hydrolysis or (bio)degradation through the control of water permeability. The relation between the water transport and morphology (TEM data) shows the impact of polymer component ratio on the regulating water flux in a hydrophobic matrix. To elucidate the role of hydrophilicity of the second component presented in the PHB blends, we studied the PHB/PA blends where PA is the polyamide resin composed of statistical copolymer of hexamethyleneadipinate and ε-caprolactam in the ratio of 1:1. The complex of techniques including DCS and FTIR-imaging (for T-scale) demonstrates the interaction between PHB and PA in the temperature ranges of crystallization and melting. The general approach based on Flory-Huggins equation is presented as the way for choosing the pairs of compatible or partly compatible polymers.

[1] Chen G.: Chem. Soc. Rev., 2009, 38, 2434.

[2] Siracusa V., Rocculi P., Romani S. and Rosa M.: Trends in Food Sci. & Techn., 2008, doi:10.1016/j.tifs.2008.07.003.

[3] Mooney B.: Biochem. J., 2009, 418, 219.

[4] Gross R. and Kalra B.: Science, 2002, 297, 803.

[5] Zhong Z., Song B. and Huang C.: Mat. Manufact. Proc., 2009, 24, 519.

[6] Akiyama M., Tsuge T. and Doi Y.: Polym. Degrad. Stab., 2003, 80, 183.

[7] Chiellini E., Corti A., D'Antone S. and Solaro R.: Prog. Polym. Sci., 2003, 28, 963.

[8] Gabathuler R.: Neurobiol. of Disease, 2010, 37, 48.

[9] Gonzalez-Montiel A., Keskkula H. and Paul D.: J. Polym. Sci. B, 1995, 33, 1751.

[10] Hu Y. and Hurt R.: Carbon, 2001, 39, 887.

[11] Iordanskii A.: Ch. 1 [in:] Iordanskii A., Startsev O. and Zaikov G. (Eds.), Water Transport in Synthetic Polymers. Nova Science Publishers Inc., New York 2004.

[12] Terada M. and Marchessault R.: Int. J. Biolog. Macromol., 1999, 25, 207.

[13] Iordanskii A., Rudakova T. and Zaikov G.: Ser. New Concepts in Polymer Science. VSP Science Press, 1994, 298.

[14] Ol'khov A., Vlasov C., Shibryaeva L. et al.: Polym. Sci., 2000, 42, 447.

[15] Williams C., Macpherson J., Unwin P. and Parkinson C.: Anal. Sci., 2008, 24, 437.

[16] Furmaniak S., Terzyk A., Gauden P. and Rychlicki G.: J. Food Eng., 2007, 79, 718.

[17] Pankova Yu.: PhD thesis, Moskwa 2007.

[18] Olkhov A., Vlasov S., Iordanskii A. et al.: J. Appl. Polymer. Sci., 2003, 90, 1471.

[19] Hansen Ch., Durkee J., Barnes G. and Lyndhurst N.: 2007, ISBN-13: 9780849372483.