Characterization and Properties of Titanium(IV) Oxide, Synthesized by Different Routes

Tetiana Dontsova1, Anastasiya Kutuzova1, Ahmad Hosseini-Bandegharaei2, 3 (pp 465-474)
Affiliation: 
1 Department of Technology of Inorganic Substances, Water Purification and General Chemical Technology, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prosp. Peremohy, 03056 Kyiv, Ukraine 2 Department of Environmental Health Engineering, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran 3 Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar, Iran dontsova@xtf.kpi.ua
DOI: 
https://doi.org/10.23939/chcht15.04.465
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
The article considers the influence of precursor type and sol-gel synthesis conditions of TiO2 on its properties. The obtained TiO2 samples were characterized by X-ray diffraction methods, electron microscopy, as a result of which it was found that all the obtained TiO2 powders have the crystallite size in a nanorange of 2.5–17 nm. It was shown that sorption-photocatalytic properties of TiO2 significantly depend on a phase composition, surface acidity, specific surface area and porosity. It was found that the amorphous TiO2 has improved adsorption properties, while crystalline TiO2 is characterized by enhanced photocatalytic properties. Determined acidic nature of the TiO2 surface explains the better sorption and photocatalysis relative to the cationic dye.
References: 

[1] Janus M., Kusiak-Nejman E., Morawski A.: Reac. Kinet. Mech. Cat., 2011, 103, 279. https://doi.org/10.1007/s11144-011-0326-z
https://doi.org/10.1007/s11144-011-0326-z

[2] Dontsova T., Nahirniak S., Astrelin I.: J. Nanomater., 2019, 2019. https://doi.org/10.1155/2019/5942194
https://doi.org/10.1155/2019/5942194

[3] Apopei P., Catrinescu C., Teodosiu C.: Appl. Catal. B- Environ., 2014, 160-161, 374. https://doi.org/10.1016/j.apcatb.2014.05.030
https://doi.org/10.1016/j.apcatb.2014.05.030

[4] Shi L., Weng D.: Int. J. Environ. Sci., 2008, 20, 1263. https://doi.org/10.1016/S1001-0742(08)62219-6
https://doi.org/10.1016/S1001-0742(08)62219-6

[5] Siah W., Lintang H., Shamsuddin M.: IOP Conf. Ser.: Mater. Sci. Eng., 2016, 107, 012005. https://doi.org/10.1088/1757-899X/107/1/012005
https://doi.org/10.1088/1757-899X/107/1/012005

[6] Nyamukamba P., Okoh O., Mungondori H. et al.: Synthetic Methods for Titanium Dioxide Nanoparticles: A Review [in:] Yang D. (Ed.), Material for a Sustainable Environment: ТіО2, IntechOpen 2018. https://doi.org/10.5772/intechopen.75425
https://doi.org/10.5772/intechopen.75425

[7] Kulkarni M., Thakur P.: Chem. Chem. Technol., 2010, 4, 265.

[8] Sviderskyi A., Nahirniak S., Yashchenko T. et al.: 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP), 2018, 8914913. https://doi.org/10.1109/NAP.2018.8914913
https://doi.org/10.1109/NAP.2018.8914913

[9] Górska P., Zaleska A., Kowalska E.: Appl. Catal. B-Environ., 2008, 84, 440. https://doi.org/10.1016/j.apcatb.2008.04.028
https://doi.org/10.1016/j.apcatb.2008.04.028

[10] Randorna C., Irvine J.: J. Mater. Chem., 2010, 20, 8700. https://doi.org/10.1039/C0JM01370F
https://doi.org/10.1039/c0jm01370f

[11] Catauro M., Tranquillo E., Dal-Poggetto G. et al.: Materials, 2018, 11, 2364. https://doi.org/10.3390/ma11122364
https://doi.org/10.3390/ma11122364

[12] Buraso W., Lachom V., Siriya P. et al.: Mater. Res. Express, 2018, 5, 115003. https://doi.org/10.1088/2053-1591/aadbf0
https://doi.org/10.1088/2053-1591/aadbf0

[13] Kutuzova A., Dontsova T.: Proceedings of the 2018 IEEE 8 the International Conference on Nanomaterials: Application & Properties (NAP), 2018, 8914747. https://doi.org/10.1109/NAP.2018.8914747
https://doi.org/10.1109/NAP.2018.8914747

[14] Abisharani J., Devikala S., Dinesh Kumar R. et al.: Mater. Today Proceedings, 2019, 14, 302. https://doi.org/10.1016/j.matpr.2019.04.151
https://doi.org/10.1016/j.matpr.2019.04.151

[15] Hu H., Lina Y., Hu Y.: Chem. Eng., 2019, 375, 122029. https://doi.org/10.1016/j.cej.2019.122029
https://doi.org/10.1016/j.cej.2019.122029

[16] Kutuzova A., Dontsova T.: Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Application & Properties (NAP), 2017, 01NNPT02. https://doi.org/10.1109/NAP.2017.8190182
https://doi.org/10.1109/NAP.2017.8190182

[17] Awad N., Edwards S., Morsi Y.: Mater. Sci. Eng. C, 2017, 76, 1401. https://doi.org/10.1016/j.msec.2017.02.150
https://doi.org/10.1016/j.msec.2017.02.150

[18] Wang Y., He Y., Lai Q.: J. Environ. Sci., 2014, 26, 2139. https://doi.org/10.1016/j.jes.2014.09.023
https://doi.org/10.1016/j.jes.2014.09.023

[19] Akpan U., Hameed B.: Appl. Catal. A-Gen., 2010, 375, 1. https://doi.org/10.1016/j.apcata.2009.12.023
https://doi.org/10.1016/j.apcata.2009.12.023

[20] Lee H., Song M., Jurng J.: Powder Technol., 2011, 214, 64. https://doi.org/10.1016/j.powtec.2011.07.036
https://doi.org/10.1016/j.powtec.2011.07.036

[21] Mamaghani A., Haghighat F., Lee C.-S.: Chemosphere, 2019, 219, 804. https://doi.org/10.1016/j.chemosphere.2018.12.029
https://doi.org/10.1016/j.chemosphere.2018.12.029

[22] Arconada N., Durán A., Suárez S. et al.: Appl. Catal. B-Environ., 2009, 86, 1. https://doi.org/10.1016/j.apcatb.2008.07.021
https://doi.org/10.1016/j.apcatb.2008.07.021

[23] Teng H., Xu S., Wang J.: Rare Metal Mat. Eng., 2014, 43, 2326. https://doi.org/10.1016/S1875-5372(14)60163-6
https://doi.org/10.1016/S1875-5372(14)60163-6

[24] Sathiyan K., Bar-Ziv R., Mendelson O. et al.: Mater. Res. Bull., 2020, 126, 110842. https://doi.org/10.1016/j.materresbull.2020.110842
https://doi.org/10.1016/j.materresbull.2020.110842

[25] Rathore N., Kulshreshtha A., Shukla R.: Physica B, 2020, 582, 411969. https://doi.org/10.1016/j.physb.2019.411969
https://doi.org/10.1016/j.physb.2019.411969

[26] Wang Q., Kwona S.-H., Hui K. et al.: Vacuum, 2013, 89, 90. https://doi.org/10.1016/j.vacuum.2011.11.020
https://doi.org/10.1016/j.vacuum.2011.11.020

[27] Shimizua T., Fujibayashia S., Yamaguchi S. et al.: Acta Biomater., 2016, 35, 305. https://doi.org/10.1016/j.actbio.2016.02.007
https://doi.org/10.1016/j.actbio.2016.02.007

[28] Cimieri I., Poelman H., Ryckaert J. et al.: J Photoch Photobio A, 2013, 263, 1. https://doi.org/10.1016/j.jphotochem.2013.04.025
https://doi.org/10.1016/j.jphotochem.2013.04.025

[29] Kutuzova A., Dontsova T.: Appl. Nanosci., 2019, 9, 873. https://doi.org/10.1007/s13204-018-0754-4
https://doi.org/10.1007/s13204-018-0754-4

[30] Mutuma B., Shao G., Kim W. et al.: J. Colloid Interf. Sci., 2015, 442, 1. https://doi.org/10.1016/j.jcis.2014.11.060
https://doi.org/10.1016/j.jcis.2014.11.060

[31] Habibi S., Jamshidi M.: Mater. Sci. Semicond. Process., 2020, 109, 104927. https://doi.org/10.1016/j.mssp.2020.104927
https://doi.org/10.1016/j.mssp.2020.104927

[32] Henderson M.: Surf. Sci. Rep. 2011, 66, 185. https://doi.org/10.1016/j.surfrep.2011.01.001
https://doi.org/10.1016/j.surfrep.2011.01.001

[33] Elsellami L., Dappozze F., Fessi N. et al.: Process Saf. Environ., 2018, 113, 109. https://doi.org/10.1016/j.psep.2017.09.006
https://doi.org/10.1016/j.psep.2017.09.006

[34] Leyva-Porras C., Toxqui-Teran A., Vega-Becerra O. et al.: J. Alloy Compd., 2015, 647, 627. https://doi.org/10.1016/j.jallcom.2015.06.041
https://doi.org/10.1016/j.jallcom.2015.06.041

[35] Pazokifard S., Farrokhpay S., Mirabedini M. et al.: Prog. Org. Coat., 2015, 87, 36. https://doi.org/10.1016/j.porgcoat.2015.04.021
https://doi.org/10.1016/j.porgcoat.2015.04.021

[36] Dontsova T., Yanushevskaya E., Nahirniak S. et al.: J. Nanomater., 2018, 2018. https://doi.org/10.1155/2018/6573016
https://doi.org/10.1155/2018/6573016

[37] Dontsova T., Ivanenko I., Astrelin I.: Springer Proc. Phys., 2015, 167, 275. https://doi.org/10.1007/978-3-319-18543-9_19
https://doi.org/10.1007/978-3-319-18543-9_19

[38] Hamal D., Klabunde K.: J. Colloid Interf. Sci., 2007, 311, 514. https://doi.org/10.1016/j.jcis.2007.03.001
https://doi.org/10.1016/j.jcis.2007.03.001

[39] Lee K., Mazare A., Schmuki P.: Chem. Rev., 2014, 114, 9385. https://doi.org/10.1021/cr500061m
https://doi.org/10.1021/cr500061m