Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

The (1H-Tetrazol-1-yl)arenediazonium Salts as Convenient Reagents for Quinones Arylation: Synthesis of 1,3-Benzoxathiol-2-ones and Naphtho[2,1-d][1,3]oxathiol-2-ones Bearing (1H-Tetrazol-1-yl)phenyl Motif

Nazariy Pokhodylo1, Roman Martyak1, Mykola Тupychak1, Khrystyna Pitkovych1, Vasyl Matiychuk1, Mykola Obushak1
Affiliation: 
1 Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St., 79005 Lviv, Ukraine pokhodylo@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.02.304
AttachmentSize
PDF icon full_text.pdf398.84 KB
Abstract: 
. A convenient two-step method for the synthesis of novel 1,3-benzoxathiol-2-ones and naphtho[2,1-d][1,3]oxathiol-2-ones bearing (1H-tetrazol-1-yl)phenyl motif was developed. As a key step of the synthesis, an arylation of quinones (1,4-benzoquinone, 1,4-naphtho-quinones) with the (1H-tetrazol-1-yl)arenediazonium salts was studied and efficient protocols were elaborated to obtain a variety of substituted ((1H-tetrazol-1-yl)phenyl) benzo/naphtho-1,4-quinones in good to excellent yields. An alternative synthesis of ((1H-tetrazol-1-yl)phenyl) naphtho-1,4-quinones via Diels-Alder reaction of tetrazolylphenyl-1,4-benzoquinones was demonstrated. The prepared benzo/naphtho-1,4-quinones readily react with thiourea at room temperature in the presence of a strong mineral acid to form intermediate isothiuronium salts, which cyclize with high yields to condense 1,3-oxathiol-2-ones under heating.
References: 

[1] Myznikov, L.V.; Vorona, S.V.; Zevatskii, Y.E. Biologically Active Compounds and Drugs in the Tetrazole Series. Chem. Hete-rocycl. Compd. (N Y) 2021, 57, 224-233. https://doi.org/10.1007/s10593-021-02897-4
https://doi.org/10.1007/s10593-021-02897-4

[2] Wei, C.-X.; Bian, M.; Gong, G.-H. Tetrazolium Compounds: Synthesis and Applications in Medicine. Molecules 2015, 20, 5528-5553. https://doi.org/10.3390/molecules20045528
https://doi.org/10.3390/molecules20045528

[3] Herr, R.J. 5-Substituted-1H-tetrazoles as Carboxylic Acid Isos-teres: Medicinal Chemistry and Synthetic Methods. Bioorg. Med. Chem. 2002, 10, 3379-3393. https://doi.org/10.1016/S0968-0896(02)00239-0
https://doi.org/10.1016/S0968-0896(02)00239-0

[4] Tang, H.; de Jesus, R.K.; Walsh, S.P.; Zhu, Y.; Yan, Y.; Priest, B.T.; Swensen, A.M.; Alonso-Galicia, M.; Felix, J.P.; Brochu, R.M. et al. Discovery of a Novel Sub-Class of ROMK Channel Inhibitors Typified by 5-(2-(4-(2-(4-(1H-Tetrazol-1-yl)phenyl)acetyl)piperazin-1-yl)ethyl)isobenzofuran-1(3H)-one. Bioorganic Med. Chem. Lett. 2013, 23, 5829-5832. https://doi.org/10.1016/j.bmcl.2013.08.104
https://doi.org/10.1016/j.bmcl.2013.08.104

[5] Abrahamsson, K.; Andersson, P.; Bergman, J.; Bredberg, U.; Brånalt, J.; Egnell, A.-C.; Eriksson, U.; Gustafsson, D.; Hoffman, K.-J.; Nielsen, S. et.al. Discovery of AZD8165 - A Clinical Candi-date from a Novel Series of Neutral Thrombin Inhibitors. Med. Chem. Commun. 2016, 7, 272-281. https://doi.org/10.1039/C5MD00479A
https://doi.org/10.1039/C5MD00479A

[6] Tsuchimori, N.; Hayashi, R.; Kitamoto, N.; Asai, K.; Kitazaki, T.; Iizawa, Y.; Itoh, K.; Okonogi, K. In Vitro and In Vivo Antifun-gal Activities of TAK-456, a Novel Oral Triazole with a Broad Antifungal Spectrum. Antimicrob. Agents Chemother. 2002, 46, 1388-1393. https://doi.org/10.1128/AAC.46.5.1388-1393.2002
https://doi.org/10.1128/AAC.46.5.1388-1393.2002

[7] Vembu, S.; Parasuraman, P.; Gopalakrishnan, M. Synthesis, in vitro Antifungal and Antitubercular Evaluation of Novel Amino Pyrimidines Based Tetrazole Derivatives. J. Pharm. Res. 2014, 8, 1552-1558.

[8] Vembu, S.; Parasuraman, P.; Gopalakrishnan, M. Design, in silico Molecular Docking Studies, Synthesis, Spectral Characteriza-tion and in vitro Antifungal Evaluation of 1-(4-(1H-tetrazole-1-yl) phenyl)-3-arylprop-2-en-1-ones. Der Pharma Chem. 2014, 6, 35-44.

[9] Lamie, P.F.; Philoppes, J.N.; Azouz, A.A.; Safwat, N.M. Novel Tetrazole and Cyanamide Derivatives as Inhibitors of Cyclooxygenase-2 enzyme: Design, Synthesis, Anti-Inflammatory Evaluation, Ulcerogenic Liability and Docking Study. J. Enzyme Inhib. Med. Chem. 2017, 32, 805-820. https://doi.org/10.1080/14756366.2017.1326110
https://doi.org/10.1080/14756366.2017.1326110

[10] Ismael, A.; Henriques, M.S.C.; Marques, C.; Rodrigues, M.; Barreira, L.; Paixao, J.A.; Fausto, R.; Cristiano, M.L.S. Exploring Saccharinate-Tetrazoles as Selective Cu(II) Ligands: Structure, Magnetic Properties and Cytotoxicity of Copper(II) Complexes Based on 5-(3-Aminosaccharyl)-tetrazoles. RSC Adv. 2016, 6, 71628-71637. https://doi.org/10.1039/C6RA15051A
https://doi.org/10.1039/C6RA15051A

[11] Reddy, S.R.K.; Surya, S.M.; Shaik, M.; Kanuparthy, P.R. Copper Complexes of Pyridyl-Tetrazole Ligands with Pendant Amide and Hydrazide Arms: Synthesis, Characterization, DNA-Binding and Antioxidant Properties. Transit. Met. Chem. 2016, 41, 517-523. https://doi.org/10.1007/s11243-016-0047-2
https://doi.org/10.1007/s11243-016-0047-2

[12] Slyvka, Yu.I.; Fedorchuk, A.A.; Pokhodylo, N.T.; Lis, T.; Kityk, I.V.; Mys'kiv, M.G. A Novel Copper (I) Sulfamate π-Complex Based on the 5-(Allylthio)-1-(3,5-dimethylphenyl)-1H-tetrazole Ligand: Alternating-current Electrochemical Crystalliza-tion, DFT Calculations, Structural and NLO Properties Studies. Polyhedron 2018, 147, 86-93. https://doi.org/10.1016/j.poly.2018.03.015
https://doi.org/10.1016/j.poly.2018.03.015

[13] Slyvka, Y.; Goreshnik, E.; Pokhodylo, N.; Pavlyuk, O.; Mys'kiv, M. Two Related Copper(I) π-Complexes Based on 2-Allyl-5-(2-pyridyl)-2H-tetrazole Ligand: Synthesis and Structure of [Cu(2-apyt)NO3] and [Cu(2-apyt)(H2O)](BF4) Compounds. Acta Chim. Slov. 2016, 63, 399-405. https://doi.org/10.17344/acsi.2016.2486
https://doi.org/10.17344/acsi.2016.2486

[14] Slyvka, Y.; Goreshnik, E.; Veryasov, G.; Morozov, D.; Fe-dorchuk, A.A.; Pokhodylo, N.; Kityk, I.; Mys'kiv, M. The Novel Copper(I) π,σ-Complexes with 1-(Aryl)-5-(allylthio)-1H-tetrazoles: Synthesis, Structure Characterization, DFT-Calculation and Third-Order Nonlinear Optics. J. Coord. Chem. 2019, 72, 1049-1063. https://doi.org/10.1080/00958972.2019.1580699
https://doi.org/10.1080/00958972.2019.1580699

[15] Pokhodylo, N.T.; Shyyka, O.Y.; Matiychuk, V.S.; Obushak, M.D. New Convenient Strategy for Annulation of Pyrimidines to Thiophenes or Furans via the One-pot Multistep Cascade Reaction of 1H-Tetrazoles with Aliphatic Amines. ACS Comb. Sci. 2015, 17, 399-403. https://doi.org/10.1021/co5001376
https://doi.org/10.1021/co5001376

[16] Shyyka, O.; Pokhodylo, N.; Finiuk, N.; Matiychuk, V.; Stoika, R.; Obushak, M. Anticancer Activity Evaluation of New Thieno[2,3-d]pyrimidin-4(3H)-ones and Thieno[3,2-d]pyrimidin-4(3H)-one Derivatives. Sci. Pharm. 2018, 86, 28. https://doi.org/10.3390/scipharm86030028
https://doi.org/10.3390/scipharm86030028

[17] Pokhodylo, N.T.; Shyyka, O.Y.; Slyvka, Y.I.; Goreshnik, E.A.; Obushak, M.D. Solvent-Free Synthesis of Cytisine-Thienopyrimidinone Conjugates via Transannulation of 1H-tetrazoles: Crystal and Molecular Structure, Docking Studies and Screening for Anticancer Activity. J. Mol. Struct. 2021, 1240, 130487. https://doi.org/10.1016/j.molstruc.2021.130487
https://doi.org/10.1016/j.molstruc.2021.130487

[18] Shyyka, O.Y.; Pokhodylo, N.T.; Palchykov, V.A.; Finiuk, N.S.; Stoika, R.S.; Obushak, M.D. Cage-Like Amines in the Green Protocol of Transannular Thieno[2,3-d]Pyrimidinone Formation as Promising Anticancer Agents. Chem. Heterocycl. Compd. 2020, 56, 793-799. https://doi.org/10.1007/s10593-020-02732-2
https://doi.org/10.1007/s10593-020-02732-2

[19] Burnett, A. R.; Thomson, R. H. Naturally Occurring Qui-nones. Part X. The Quinonoid Constituents of Tabebuia avel-lanedae (Bignoniaceae). J. Chem. Soc. C 1967, 2100-2104. https://doi.org/10.1039/j39670002100
https://doi.org/10.1039/j39670002100

[20] Ma, W.; Long, Y.-T. Quinone/Hydroquinone-Functionalized Biointerfaces for Biological Applications from the Macro- to Nano-Scale. Chem. Soc. Rev. 2014, 43, 30-41. https://doi.org/10.1039/c3cs60174a
https://doi.org/10.1039/C3CS60174A

[21] Zhang, L.; Zhang, G.; Xu, S.; Song, Y. Recent Advances of Quinones as a Privileged Structure in Drug Discovery. Eur. J. Med. Chem. 2021, 223, 113632. https://doi.org/10.1016/j.ejmech.2021.113632
https://doi.org/10.1016/j.ejmech.2021.113632

[22] Calì, V.; Tringali, C. Polyhydroxy-P-Terphenyls and Related P-Terphenylquinones from Fungi: Overview and Biological Properties. Stud. Nat. Prod. Chem. 2003, 29, 263-307. https://doi.org/10.1016/s1572-5995(03)80009-1
https://doi.org/10.1016/S1572-5995(03)80009-1

[23] Deb, A.; Agasti, S.; Saboo, T.; Maiti, D. Generation of Ary-lated Quinones by Iron-Catalyzed Oxidative Arylation of Phenols: Formal Synthesis of Phellodonin, Sarcodonin ε, Leucomelone and Betulinan A. Adv. Synth. Catal. 2014, 356, 705-710. https://doi.org/10.1002/adsc.201301084
https://doi.org/10.1002/adsc.201301084

[24] Fujiwara, Y.; Domingo, V.; Seiple, I.B.; Gianatassio, R.; Del Bel, M.; Baran, P.S. Practical C−H Functionalization of Quinones with Boronic Acids. J. Am. Chem. Soc. 2011, 133, 3292-3295. https://doi.org/10.1021/ja111152z
https://doi.org/10.1021/ja111152z

[25] Rondestvedt Jr, C.S. Arylation of Unsaturated Compounds by Diazonium Salts (The Meerwein Arylation Reaction). Org. React. 2011. https://doi.org/10.1002/0471264180.or024.03
https://doi.org/10.1002/0471264180.or024.03

[26] Honraedt, A.; Le Callonnec, F.; Le Grognec, E.; Fernandez, V.; Felpin, F.-X. C-H Arylation of Benzoquinone in Water through Aniline Activation: Synergistic Effect of Graphite-Supported Cop-per Oxide Nanoparticles. J. Org. Chem. 2013, 78, 4604-4609. https://doi.org/10.1021/jo4004426
https://doi.org/10.1021/jo4004426

[27] Lamblin, M.; Naturale, G.; Dessolin, J.; Felpin, F.-X. Direct C-H Arylation of Quinones with Anilines. Synlett 2012, 23, 1621-1624. https://doi.org/10.1055/s-0031-1291163
https://doi.org/10.1055/s-0031-1291163

[28] Itahara, T. Oxidative Coupling of Quinones and Aromatic Compounds by Palladium(II) Acetate. J. Org. Chem. 1985, 50, 5546-5550. https://doi.org/10.1021/jo00350a023
https://doi.org/10.1021/jo00350a023

[29] Singh, P.K.; Rohtagi, B.K.; Khanna, R.N. Arylation of Quin-tones with Aryl Mercuryl Chloride Catalyzed by Lithium Palladium Chloride. Synth. Commun. 1992, 22, 987-993. https://doi.org/10.1080/00397919208019287
https://doi.org/10.1080/00397919208019287

[30] Best, W.M.; Sims, C.G.; Winslade, M. Palladium-Catalysed Cross Coupling of Arylboronic Acids with 2-Chloro-1,4-naphthoquinones: the Synthesis of 2-Aryl- and 2,3-Bisaryl-1,4-naphthoquinones. Aust. J. Chem. 2001, 54, 401-403. https://doi.org/10.1071/CH01024
https://doi.org/10.1071/CH01024

[31] Gan, X.; Jiang, W.; Wang, W.; Hu, L. An Approach to 3,6-Disubstituted 2,5-Dioxybenzoquinones via Two Sequential Suzuki Couplings. Three-Step Synthesis of Leucomelone. Org. Lett. 2009, 11, 589-592. https://doi.org/10.1021/ol802645f
https://doi.org/10.1021/ol802645f

[32] Wang, J.; Wang, S.; Wang, G.; Zhang, J.; Yu, X.-Q. Iron-Mediated Direct Arylation with Arylboronic Acids Through an Aryl Radical Transfer Pathway. Chem. Commun. 2012, 48, 11769-11771. https://doi.org/10.1039/C2CC35468C
https://doi.org/10.1039/c2cc35468c

[33] Komeyama, K.; Kashihara, T.; Takaki, K. FeSO4-promoted Direct Arylation of Benzoquinones with ArB(OH)2 or ArBF3K. Tetrahedron Lett. 2013, 54, 1084-1086. https://doi.org/10.1016/j.tetlet.2012.12.031
https://doi.org/10.1016/j.tetlet.2012.12.031

[34] Singh, P.P.; Aithagani, S.K.; Yadav, M.; Singh, V.P.; Vish-wakarma, R.A. Iron-catalyzed Cross-Coupling of Electron-Deficient Heterocycles and Quinone with Organoboron Species via Innate C-H Functionalization: Application in Total Synthesis of Pyrazine Alkaloid Botryllazine A. J. Org. Chem. 2013, 78, 2639-2648. https://doi.org/10.1021/jo302797r
https://doi.org/10.1021/jo302797r

[35] Deb, A.; Manna, S.; Maji, A.; Dutta, U.; Maiti, D. Iron-Catalyzed Direct C-H Arylation of Heterocycles and Quinones with Arylboronic Acids. Eur. J. Org. Chem. 2013, 2013, 5251-5256. https://doi.org/10.1002/ejoc.201300743
https://doi.org/10.1002/ejoc.201300743

[36] Ashok, P.; Ilangovan, A. Transition Metal Mediated Selective C vs N Arylation of 2-Aminonaphthoquinone and its Application Toward the Synthesis of Benzocarbazoledione. Tetrahedron Lett. 2018, 59, 438-441. https://doi.org/10.1016/j.tetlet.2017.10.075
https://doi.org/10.1016/j.tetlet.2017.10.075

[37] Molina, M.T.; Navarro, C.; Moreno, A.; Csákÿ, A.G. Aryla-tion of Benzo-Fused 1,4-Quinones by the Addition of Boronic Acids under Dicationic Pd(II)-Catalysis. Org. Lett. 2009, 11, 4938-4941. https://doi.org/10.1021/ol902084g
https://doi.org/10.1021/ol902084g

[38] Patil, P.; Nimonkar, A.; Akamanchi, K.G. Aryl-Free Radical-Mediated Oxidative Arylation of Naphthoquinones Using o-Iodoxybenzoic Acid and Phenylhydrazines and Its Application toward the Synthesis of Benzocarbazoledione. J. Org. Chem. 2014, 79, 2331-2336. https://doi.org/10.1021/jo500131h
https://doi.org/10.1021/jo500131h

[39] Moon, Y.; Jeong, Y.; Kook, D.; Hong, S. Rh(III)-catalyzed Direct C-H/C-H Cross-Coupling of Quinones with Arenes Assisted by a Directing Group: Identification of Carbazole Quinones as GSKβ Inhibitors. Org. Biomol. Chem. 2015, 13, 3918-3923. https://doi.org/10.1039/C4OB02624A
https://doi.org/10.1039/C4OB02624A

[40] Wang, D.; Ge, B.; Li, L.; Shan, J.; Ding, Y. Transition Metal-Free Direct C-H Functionalization of Quinones and Naphthoqui-nones with Diaryliodonium Salts: Synthesis of Aryl Naphthoqui-nones as β-Secretase Inhibitors. J. Org. Chem. 2014, 79, 8607-8613. https://doi.org/10.1021/jo501467v
https://doi.org/10.1021/jo501467v

[41] Wang, Y.; Zhu, S.; Zou, L.-H. Recent Advances in Direct Functionalization of Quinones. Eur. J. Org. Chem. 2019, 2019, 2179-2201. https://doi.org/10.1002/ejoc.201900028
https://doi.org/10.1002/ejoc.201900028

[42] Gaponik, P.N.; Karavai, V.P.; Davshko, I.E.; Degtyarik, M.M.; Bogatikov, A.N. Synthesis and Properties of Phenylenebis-1H-tetrazoles. Chem. Heterocycl. Compd. 1990, 26, 1274-1278. https://doi.org/10.1007/BF00476984
https://doi.org/10.1007/BF00476984

[43] Herbst, R.M.; Roberts, C.W.; Givens, H.T.F.; Harvill, E.K. The Synthesis of Nitro- and Amino-Phenyltetrazoles. J. Org. Chem. 1952, 17, 262-271. https://doi.org/10.1021/jo01136a014
https://doi.org/10.1021/jo01136a014

[44] Zuo, Z.; Chen, M.; Shao, X.; Qian, X.; Liu, X.; Zhou, X.; Xiang, J.; Deng, P.; Li, Y.; Jie, H. et al. Design and Biological Evaluation of Tetrahydropyridine Derivatives as Novel Human GPR119 Agonists. Bioorg. Med. Chem. Lett. 2020, 30, 126855. https://doi.org/10.1016/j.bmcl.2019.126855
https://doi.org/10.1016/j.bmcl.2019.126855

[45] Shurukhin, Y.V.; Klyuev, N.A.; Grandberg, I.I.; Konchits, V.A. Thermal Reactions of 1-Aryl-5-methyltetrazoles. Chem. Hete-rocycl. Compd. 1984, 20, 1177-1182. https://doi.org/10.1007/BF00503616
https://doi.org/10.1007/BF00503616

[46] Scott, F.; Britten, F.; Reilly, J. Notes - Polynitrogen Systems from the Hydrazinocarbonic Acids. Part VII. Some Reactions of 1-Phenyl-5-methylmercaptotetrazole. J. Org. Chem. 1956, 21, 1191-1193. https://doi.org/10.1021/jo01116a615
https://doi.org/10.1021/jo01116a615

[47] Neamati, N.; Petasis, N.; Yamada, R. Propynoic acid carba-moyl methyl-almides and pharmaceutical compositions and methods based thereon. WO2012129452A2, 2012.

[48] Allen, C.F.H.; Bell, A. 2,3-Dimethyl-1,3-butadiene. Organic Synth. 1942, 22, 39. https://doi.org/10.15227/orgsyn.022.0039
https://doi.org/10.15227/orgsyn.022.0039

[49] Pokhodylo, N.T.; Matiychuk, V.S.; Obushak, M.D. Synthesis of Isothiocoumarin Derivatives. Chem. Heterocycl. Compd. 2010, 46, 140-145. https://doi.org/10.1007/s10593-010-0484-3
https://doi.org/10.1007/s10593-010-0484-3

[50] Pokhodylo, N.; Finiuk, N.; Klyuchivska, O.; Stoika, R.; Ma-tiychuk, V.; Obushak, M. Bioisosteric Replacement of 1H-1,2,3-Triazole with 1H-Tetrazole Ring Enhances Anti-Leukemic Activity of (5-Benzylthiazol-2-yl)benzamides. Eur. J. Med. Chem. 2023, 250, 115126. https://doi.org/10.1016/j.ejmech.2023.115126
https://doi.org/10.1016/j.ejmech.2023.115126

[51] Marini-Bettòlo, G.B.; Rossi, C. Action of Diazo Compounds on Quinones. II. Reaction between Diazocompounds and Naphtho-quinones; Preparation of Phenylnaphthalenes. Gazz. chim. ital. 1942, 72, 208-215. (Chem. Abstr. 1943, 37, 4386-4387).

[52] Wurm, G.; Gurka, H.-J. Phenyl-1,4-naphthochinonderivate mit Hydroxylierungsmustern von Bioflavonoiden. Pharmazie 1997, 52, 739-743.

[53] Fiedler, H. Darstellung von Hydroxy-2-oxo- bzw.−2-thion-1.3-benzoxathiolen. Chemische Berichte 1962, 95, 1771-1785. https://doi.org/10.1002/cber.19620950731
https://doi.org/10.1002/cber.19620950731

[54] Klemm, K.; Geiger, B. Addition von Dithiocarbonsäure-Derivaten an p-Chinone. Justus Liebigs Ann. Chem. 1969, 726, 103-109. https://doi.org/10.1002/jlac.19697260116
https://doi.org/10.1002/jlac.19697260116

[55] Harris, R.L.N.; Oswald, L.T. The Addition of Dithiocarbamic Acids to p-Benzoquinone. Aust. J. Chem. 1974, 27, 1309-1316. https://doi.org/10.1071/CH9741309
https://doi.org/10.1071/CH9741309

[56] Hartmann, H.; Mohn, F. Kationische Farbstoffe und Vorstu-fen. XVI. Styrylcyanine der 1,3-Oxathiolium-Reihe. J. Prakt. Chem. 1972, 314, 419-427. https://doi.org/10.1002/prac.19723140305
https://doi.org/10.1002/prac.19723140305

[57] Fabian, K.; Hartmann, H. Kationische Farbstoffe und Vorstu-fen. VI. Versuche zur Cyclisierung von S-Ketomethylen-sowie o-Hydroxyphenyl-thiolester-Derivaten zu 1,3-Oxathiolium- bzw. 1,3-Dithiolium-Salzen. J. Prakt. Chem.1971, 313, 722-729. https://doi.org/10.1002/prac.19713130420
https://doi.org/10.1002/prac.19713130420

[58] Shadyro, O.I.; Timoshchuk, V.A.; Polozov, G.I.; Povalishev, V.N.; Andreeva, O.T.; Zhelobkovich, V.E. Synthesis and Antiviral Activity of Spatially-Screened Phenols: 1,3-Benzoxathiolan-2-one Derivatives. Pharm. Chem. J. 1999, 33, 366-369. https://doi.org/10.1007/BF02508708
https://doi.org/10.1007/BF02508708

[59] Obushak, N.D.; Matiichuk, V.S.; Martyak, R.L. Synthesis of Heterocycles Based on Products of Anion Arylation of Unsaturated Compounds. 5. Reaction of 2-Aryl-1,4-benzoquinones with Thiou-rea. Chem. Heterocycl. Compd. 2001, 37, 909-915. https://doi.org/10.1023/A:1012420128922
https://doi.org/10.1023/A:1012420128922

[60] Vellasco, W.T.; Gomes, C.R.B.; Vasconcelos, T.R.A. Chemi-stry and Biological Activities of 1,3-Benzoxathiol-2-ones. Mini-Rev. Org. Chem. 2011, 8, 103-109. https://doi.org/10.2174/157019311793979882
https://doi.org/10.2174/157019311793979882

[61] Musyanovych, R. Reactions of Sulfenyl Chlorides of Substi-tuted 1,4-Naphthoquinone. Chem. Chem. Technol. 2011, 5, 367-372. https://doi.org/10.23939/chcht05.04.367
https://doi.org/10.23939/chcht05.04.367

[62] Shakh, Y.; Slesarchuk, M.; Syngaevsky, V.; Bolibrukh, K.; Karkhut, A.; Polovkovych, S.; Shevchuk, L.; Novikov, V. Interac-tion of 5-Substituted 1,4-Naphthoquinones and Amino Thiotria-zoles: Reaction Ways and Regioselectivity. Chem. Chem. Technol. 2018, 12, 167-175. https://doi.org/10.23939/chcht12.02.167
https://doi.org/10.23939/chcht12.02.167

[63] Thurman, D.E.; Stollings, H.W. Synthesis of Some 5-Hydroxynaphth[2,1-d]-1,3-oxathiol-2-ones. J. Heterocycl. Chem. 1973, 10, 117-119. https://doi.org/10.1002/jhet.5570100130
https://doi.org/10.1002/jhet.5570100130