Wood Flour Composites: Obtaining and Research

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Tamara Tatrishvili1,2, Omar Mukbaniani, Nikolozi Kvinikadze1,2, Tinatini Bukia2,4, Nana Pirtskheliani2,3, Shota Chikhladze2
Affiliation: 
1 Ivane Javakhishvili Tbilisi State University, Department of Macromolecular Chemistry, 1 I. Chavchavadze Ave., Tbilisi 0179, Georgia 2 Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, 13 University St., Tbilisi 0186, Georgia 3 Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies, and Pharmacy, 61 Politkovskaya St., Tbilisi 0186, Georgia 4 Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, 5 Z. Andjzaparidze St., Tbilisi 0186, Georgia tamar.tatrishvili@tsu.ge
DOI: 
https://doi.org/10.23939/chcht18.04.567
AttachmentSize
PDF icon full_text.pdf1.33 MB
Abstract: 
In this research, we discuss the variations in producing new composite materials using natural row material wood flour (60%), as a primary ingredient, eco-friendly binder poly[(trimethoxy)4-vinylphenethyl)]silane (3, 5, and 30%) and styrene with different degrees of silylation (25 and 27%), under constant pressure and at the various temperatures. The composites were obtained via hot pressing. In addition to the binder, various additives, antioxidants, and antipirene were employed in the manufacturing process. The composition of novel wood flour composites (WFC) was investigated by Fourier transform infrared spectroscopy (FTIR), which has demonstrated the presence of chemical bonds between the components in the composites as a consequence of reactions among the active groups of the ingredients. These bonds may be the primary factor responsible for the enhanced physicomechanical and thermal properties of the obtained composites, and increased resistance to water. It has been demonstrated that the properties of composites are contingent upon the concentration of the binders employed. The research results indicate that the maximum values of the noted parameters for the composite's appearance are observed at relatively high concentrations of binders. Manufactured composites were studied surface morphology by optical microscopic, scanning electron microscopic (SEM) and energy dispersion (EDS) micro-X-ray analysis. Thermal properties of WFC were investigated using differential scanning calorimetry (DSC), thermogravimetry, and the Vicat method. Also, water absorption was studied.
References: 

[1] Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115. https://doi.org/10.3390/polym12051115
https://doi.org/10.3390/polym12051115

[2] Faruk, O.; Bledzki, A.K.; Matuana, L.M. Microcellular Foamed Wood-Plastic Composites by Different Processes: A Review. Macromol. Mater. Eng. 2007, 292, 113-127. https://doi.org/10.1002/mame.200600406
https://doi.org/10.1002/mame.200600406

[3] Guo, G.; Rizvi, G.M.; Park, C.B.; Lin, W.S. Critical Processing Temperature in the Manufacture of Fine-Celled Plastic/Wood-Fiber Composites Foams. J. Appl. Polym. Sci. 2004, 91, 621-629. https://doi.org/10.1002/app.13193
https://doi.org/10.1002/app.13193

[4] Zimmermann, M.V.G.; Turella, T.C.; Santana, R.M.C.; Zattera, A.J. The Influence of Wood Flour Particle Size and Content on the Rheological, Physical, Mechanical and Morphological Properties of EVA/Wood Cellular Composites. Mater. Des. 2014, 57, 660-666. https://doi.org/10.1016/j.matdes.2014.01.010
https://doi.org/10.1016/j.matdes.2014.01.010

[5] Zhang, S.; Rodrigue, D.; Riedl, B. Preparation and Morphology of Polypropylene/Wood Flour Composite Foam via Extrusion. Polym. Comp. 2005, 26, 731-738. https://doi.org/10.1002/pc.20143
https://doi.org/10.1002/pc.20143

[6] Kumar, V.; Sinha, S.; Saini, M.S.; Kanungo, B.K. Effect of Process Parameters on Mechanical Properties of Rice Husk Polypropylene Composites. Int. Polym. Process 2010, 24, 311-314. https://doi.org/10.3139/217.2369
https://doi.org/10.3139/217.2369

[7] Kumar, V.; Sinha, S.; Saini, M.S.; Kanungo, B.K.; Biswas, P. Rise Husk as Reinforcing Filler in Polypropylene Composites. Rev. Chem. Eng. 2010, 26, 41-53. https://doi.org/10.1515/REVCE.2010.001
https://doi.org/10.1515/REVCE.2010.001

[8] Panthapulakkal, S.; Sain, M. Agro-Residue Reinforced High-Density Polyethylene Composites: Fiber Characterization and Analysis of Composite Properties. Compos. Part A: Appl. Sci. Manuf. 2007, 38, 1445-1454. https://doi.org/10.1016/j.compositesa.2007.01.015
https://doi.org/10.1016/j.compositesa.2007.01.015

[9] Zweifel, H.; Maier, R.D.; Schiller, M. Plastics additives handbook, 6th ed; Hanser Publications: Munich, Germany, 2008.

[10] Kumar, V.; Tyagi, L.; Sinha, S. Wood Flour - reinforced Plastic Composites: A Review. Rev. Chem. Eng. 2011, 27, 253-264. https://doi.org/10.1515/REVCE.2011.006
https://doi.org/10.1515/REVCE.2011.006

[11] Bukia, T.; Utiashvili, M.; Tsiskarishvili, M.; Jalalishvili, S.; Gogolashvili, A.; Tatrishvili, T.; Petriashvili, G. Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3H-Indolenine. Chem. Chem. Technol. 2023, 17, 549-556. https://doi.org/10.23939/chcht17.03.549
https://doi.org/10.23939/chcht17.03.549

[12] Mukbaniani, O.; Tatrishvili, T.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807-819. https://doi.org/10.23939/chcht17.04.807
https://doi.org/10.23939/chcht17.04.807

[13] Petriashvili, G.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Chubinidze M. Light-Stimulated Lowering of Glucose Concentration in a Dextrose Solution Mediated By Merocyanine Molecules. Materiali In Tehnologije 2023, 57, 119-125. https://doi.org/10.17222/mit.2022.639
https://doi.org/10.17222/mit.2022.639

[14] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, Y.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
https://doi.org/10.23939/chcht14.02.251

[15] Gunka, V.; Sidun, Y.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916-922. https://doi.org/10.23939/chcht17.04.916
https://doi.org/10.23939/chcht17.04.916

[16] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33-41. https://doi.org/10.4236/wjm.2015.53004
https://doi.org/10.4236/wjm.2015.53004

[17] Shapakidze, E.; Avaliani, M.; Nadirashvili, M.; Maisuradze, V.; Gejadze, I.; Petriashvili, T. Synthesis and Study of Properties of Geopolymer Materials Developed Using Local Natural Raw Materials and Industrial Waste. Chem. Chem. Technol. 2023, 17, 711-718. https://doi.org/10.23939/chcht17.04.711
https://doi.org/10.23939/chcht17.04.711

[18] Rowell, R. M. Chemical Modification of Wood. Forest Products Abstracts 1983, 6, 363-382.

[19] Makharadze, T.; Makharadze, G. Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods. Chem. Chem. Technol. 2023, 17, 740-747.
https://doi.org/10.23939/chcht17.04.740

https://doi.org/10.23939/chcht17.04.740
https://doi.org/10.23939/chcht17.04.740

[20] Demchuk, Y.; Donchenko, M.; Astakhova, O.; Gunka, V.; Drapak, I.; Sulyma, M.; Palianytsia, L.; Bratychak, M. Effect of Bisphenol-Formaldehyde Resin on Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2024, 18, 23-29. https://doi.org/10.23939/chcht18.01.023
https://doi.org/10.23939/chcht18.01.023

[21] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325-338. https://doi.org/10.23939/chcht17.02.325
https://doi.org/10.23939/chcht17.02.325

[22] Xu, G.; Wang, L.; Liu, J.; Wu, J. FTIR and XPS Analysis of the Changes in Bamboo Chemical Structure Decayed by White-Rot and Brown-Rot Fungi. J. Appl. Surface Sci. 2013, 280, 799-805. https://doi.org/10.1016/j.apsusc.2013.05.065
https://doi.org/10.1016/j.apsusc.2013.05.065

[23] Popelka A.; Zavahir, S.; Habib, S. Chapter 2 - Morphology analysis. In Polymer Science and Innovative Applications Materials. Techniques, and Future Developments; 2020; pp 21-68. https://doi.org/10.1016/B978-0-12-816808-0.00002-0
https://doi.org/10.1016/B978-0-12-816808-0.00002-0

[24] Li, Y. Wood-Polymer Composites. In Advances in Composite Materials - Analysis of Natural and Man-Made Materials; pp. 229-284. http://dx.doi.org/10.5772/17579
https://doi.org/10.5772/17579

[25] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499-506. https://doi.org/10.23939/chcht16.04.499
https://doi.org/10.23939/chcht16.04.499

[26] Tao, Z.; Youcai, Z.; Nyankson, E.A. Resource Recovery Technology for Municipal and Rural Solid Waste: Classification, Mechanical Separation, Recycling, and Transfer; Elsevier Inc., 2023. https://doi.org/10.1016/B978-0-323-98978-7.00025-7
https://doi.org/10.1016/B978-0-323-98978-7.00025-7

[27] Tatrishvili, T.; Mukbaniani, O.; Kvnikadze, N. Chikhladze, S. Eco-Friendly Bamboo-Based Composites. Chem. Chem. Technol. 2024, 18, 44-56. https://doi.org/10.23939/chcht18.01.044
https://doi.org/10.23939/chcht18.01.044

[28] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758-765. https://doi.org/10.23939/chcht17.04.758
https://doi.org/10.23939/chcht17.04.758

[29] Monteiro, S.N.; Calado, V.; Rodriguez, R.J.S.; Margem, F.M. Thermogravimetric Stability of Polymer Composites Reinforced with Less Common Lignocellulosic Fibers - An Overview. J. Mater. Res. Tecnol. 2012, 1, 117-126. https://doi.org/10.1016/S2238-7854(12)70021-2
https://doi.org/10.1016/S2238-7854(12)70021-2