Attachment | Size |
---|---|
![]() | 711.13 KB |
[1] Miroshnichenko, D.V.; Pyshyev, S.V.; Lebedev, V.V.; Bilets, D.Y. Deposits and Quality Indicators of Brown Coal in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 3, 5–10. https://doi.org/10.33271/nvngu/2022-3/005
[2] Perelik rodovyshch buroho vuhillia, oblikovanykh Derzhavnym balansom zapasiv korysnykh kopalyn Ukrainy na 01.01.2024 r. Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy 2024.
[3] A Socially Sustainable Coal Phase-Out in Ukraine. Low Carbon Ukraine, 2019. Test procedure and technical conditions, 2018. https://www.lowcarbonukraine.com/wp-content/uploads/A-socially-sustainab... (accessed 2025-01-24)
[4] Shustov, O.O.; Bielov, O.P.; Perkova, T.I.; Adamchuk, A.A. Substantiation of the Ways to Use Lignite Concerning the Integrated Development of Lignite Deposits of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2018, 3, 5–13. https://doi.org/10.29202/nvngu/2018-3/6
[5] Pyshiev, S.; Miroshnychenko D.; Shved M. Reiestr rodovyshch buroho vuhillia Ukrainy, yaki rekomendovano vykorystovuvaty v "zelenykh" tekhnolohiiakh: dovidnyk; SPOLOM: Ternopil, 2024.
[6] Lebedev, V.; Lebedeva, K.; Cherkashina, А.; Petrushenko, S.; Bogatyrenko, S.; Olkhovska, А.; Hrubnyk, I.; Maloshtan, L.; Kopach, V.; Klochko, N. Hemostatic Gelatin-Alginate Hydrogels Modified with Humic Acids and Impregnated with Aminocaproic Acid. J. Res. Updates Polym. Sci. 2024, 13, 34–44. https://doi.org/10.6000/1929-5995.2024.13.05
[7] Miroshnichenko, D.; Lebedeva, K.; Lebedev, V.; Cherkashina, А.; Petrushenko, S.; Hrubnyk, I.; Yudina, Y.; Bogoyavlenska, O.; Klochko, N.; Lysenko, L.; et al. Hemostatic Ability of Thermosensitive Biologically Active Gelatin-Alginate Hydrogels Modified with Humic Acids and Impregnated with Aminocaproic Acid. J. Res. Updates Polym. Sci. 2024, 13, 155–160. https://doi.org/10.6000/1929-5995.2024.13.16
[8] Miroshnichenko, D.; Lebedev, V.; Lebedeva, K.; Cherkashina, А.; Petrushenko, S.; Bogoyavlenska, O.; Olkhovska, А.; Hrubnyk, I.; Maloshtan, L.; Klochko, N. Thermosensitive and Wound-Healing Gelatin-Alginate Biopolymer Hydrogels Modified with Humic Acids. J. Renew. Mater. 2024, 12, 1691–1713. https://doi.org/10.32604/jrm.2024.054769
[9] Tang, Y.; Wang, X.; Yang, Y.; Gao, B.; Wan, Y.; Li, Y.C.; Cheng, D. Activated-Lignite-Based Super Large Granular Slow-Release Fertilizers Improve Apple Tree Growth: Synthesis, Characterizations, and Laboratory and Field Evaluations. J. Agric. Food Chem. 2017, 65, 5879–5889.
[10] Lebedeva, K.; Klochko, N.; Miroshnichenko, D.; Cherkashina, A.; Bogoyavlenska, O.; Lebedev V., Design and Research of Thermo-Responsive Gelatin-Alginate-Humic Nanocomposite Hydrogels for Controlled Drug Delivery, 2024. IEEE 14th International Conference Nanomaterials: Applications & Properties (NAP), Riga, Latvia, 2024. https://doi.org/10.1109/NAP62956.2024.10739758
[11] Lebedev, V.; Miroshnichenko, D.; Bilets, D.; Mysiak, V. Investigation of Hybrid Modification of Eco-Friendly Polymers by Humic Substances. Solid State Phenom. 2022, 334, 154–161. https://doi.org/10.4028/p-gv30w7
[12] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D. Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Pet. Coal 2021, 63, 646–654.
[13] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of Humic Acids from LowGrade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol. Pet. Coal 2021, 63, 953–962.
[14] Lebedev, V.; Sizhuo, D.; Xiaobin, Z.; Miroshnichenko, D.; Pyshyev, S.; Savchenko, D. Hybrid Modification of Eco-Friendly Biodegradable Polymeric Films by Humic Substances from Low Grade Metamorphism Coal. Pet. Coal 2022, 64, 539–546.
[15] Lebedev, V.; Miroshnichenko, D.; Vytrykush, N.; Pyshyev, S.; Masikevych, A.; Filenko, O.; Tsereniuk, O.; Lysenko, L. Novel Biodegradable Polymers Modified by Humic Acids. Mater. Chem. Phys. 2024, 313, 128778. https://doi.org/10.1016/j.matchemphys.2023.128778
[16] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
[17] Miroshnichenko, D.; Lebedeva, K.; Cherkashina, A.; Lebedev, V.; Tsereniuk, O.; Krygina, N. Study of Hybrid Modification with Humic Acids of Environmentally Safe Biodegradable Hydrogel Films Based on Hydroxypropyl Methylcellulose. C-J. Carbon Res. 2022, 8, 71. https://doi.org/10.3390/c8040071
[18] Lebedev, V.; Miroshnichenko, D.; Savchenko, D.; Bilets, D.; Mysiak, V.; Tykhomyrova, T. Computer Modeling of Chemical Composition of Hybrid Biodegradable Composites. In Information Technology for Education, Science, and Technics. ITEST 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 178; Faure, E.; Danchenko, O.; Bondarenko, M.; Tryus, Y.; Bazilo, C.; Zaspa, G., Eds.; Springer Cham., 2023. https://doi.org/10.1007/978-3-031-35467-0_27
[19] Lebedev, V.; Tykhomyrova, T.; Miroshnichenko, D.; Filenko, O.; Kariev, A.; Grigorova, T. Design and Research of Environmental Friendly Polymeric Materials Modified by Humic Substances. AIP Conf. Proc. 2023, 2684, 040014. https://doi.org/10.1063/5.0119925
[20] Esfandiar, N.; Suri, R.; McKenzie, E.R. Competitive Sorption of Cd, Cr, Cu, Ni, Pb and Zn from Stormwater Runoff by Five Low-Cost Sorbents; Effects of Co-Contaminants, Humic Acid, Salinity and pH. J. Hazard. Mater. 2022, 423, 126938. https://doi.org/10.1016/j.jhazmat.2021.126938
[21] Faisal, A.A.; Abdul-Kareem, M.B.; Mohammed, A.K.; Naushad, M.; Ghfar, A.A.; Ahamad, T. Humic Acid Coated Sand as a Novel Sorbent in Permeable Reactive Barrier for Environmental Remediation of Groundwater Polluted with Copper and Cadmium Ions. J. Water Process Eng. 2020, 36, 101373. https://doi.org/10.1016/j.jwpe.2020.101373
[22] Zhon, H.Z.; Liu, P.; Su, X.C.; Liao, Y.H.; Lei, N.Sh.; Liang, Y.H.; Zhou, S.H.; Lin, W.S.; Chen, J.; Feng, Y.Q.; et al. Low-Cost Humic Acid-Bonded Silica as an Effective Solid-Phase Extraction Sorbent for Convenient Determination of Aflatoxins in Edible Oils. Analytica Chimica Acta 2017, 970, 38–46. https://doi.org/10.1016/j.aca.2017.02.029
[23] Esmaeilian, A.; O'Shea, K.E. Application of Dimensional Analysis in Sorption Modeling of the Styryl Pyridinium Cationic Dyes on Reusable Iron Based Humic Acid Coated Magnetic Nanoparticles. Chemosphere 2022, 286, 131699. https://doi.org/10.1016/j.chemosphere.2021.131699
[24] Noli F.; Fedorcea, V.; Misaelides, P.; Cretescu, I.; Kapnisti, M. Cesium and Barium Removal from Aqueous Solutions in the Presence of Humic Acid and Competing Cations by a Greek Bentonite from Kimolos Island. Appl. Radiat. Isot. 2021, 170, 109600. https://doi.org/10.1016/j.apradiso.2021.109600
[25] Zhang, Y.; Fein, J.; Yu, Q.; Liu, D.; Feng, Y.; Zu, B.; Zheng, C. Surface Complexation Modeling of the Effects of Dissolved Inorganic Carbon on Absorption of U(VI) onto Fe3O4 Nanoparticles Coated with Lignite Humic Acid. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 629, 127260. https://doi.org/10.1016/j.colsurfa.2021.127260
[26] Sarlaki, E.; Paghaleh, A.S.; Hossein, K.M.; Keyvan, A.V. Valorization of Lignite Wastes into Humic Acids: Process Optimization, Energy Efficiency and Structural Features Analysis. Renew. Energy 2021, 163, 105–122. https://doi.org/10.1016/j.renene.2020.08.096
[27] Wang, Y.; Ma, Y.; Mo, W.; Gong, W.; Ma, F.; Wei, X.; Fan, X.; Zhang, S. Functional Groups of Sequential Extracts and Corresponding Residues from Hefeng Subbituminous Coal Based on FT-IR Analysis. J. Fuel Chem. Technol. 2021, 49, 890–901. https://doi.org/10.1016/S1872-5813(21)60055-5
[28] Wang, J.; Tian, L.; Li, G.; Zhao, X.; Liang, Y.; Yu, J. Construction of Vitrinite Molecular Structures Based on 13C NMR and FT-IR Analysis: Fundamental Insight into Coal Thermoplastic Properties. Fuel 2021, 300, 120981. https://doi.org/10.1016/j.fuel.2021.120981
[29] Zhao, Y.; Xing, C.; Shao, C.; Gang, C.; Sun, S.; Chen, G.; Zhang, L.; Pei, J.; Qin, P.; Guo S. Impacts of Intrinsic Alkali and Alkaline Earth Metals on Chemical Structure of Low-Rank Coal Char: Semi-Quantitative Results Based on FT-IR Structure Parameters. Fuel 2020, 278, 118229. https://doi.org/10.1016/j.fuel.2020.118229
[30] Yang, J.; Ma, L.; Yang, J.; Guo, Z.; Liu, H.; Zhang, W. Gasification Performance and Mechanism of High-Silicon Phosphogypsum Oxygen Carrier in Chemical Looping Gasification. Energy Fuel 2019, 33, 11768–11780. https://doi.org/10.1021/acs.energyfuels.9b02042
[31] Du, W.; Ma, L.; Pan, Q.; Dai, Q.; Zhang, M.; Yin, X.; Xiong, X.; Zhang, W. Full-Loop CFD Simulation of Lignite Chemical Looping Gasification with Phosphogypsum as Oxygen Carrier Using a Circulating Fluidized Bed. Energy, 2023, 262, 125451. https://doi.org/10.1016/j.energy.2022.125451
[32] Bhattacharyya, S.; Fan, L.; Azam, S.; Liu, S. Advances in coal mining technology and sustainable mining techniques. In Woodhead Publishing Series in Energy. The Coal Handbook (Second Edition), vol. 1; Woodhead Publishing 2023; pp. 263–321.
[33] Kotlyarov, Y.; Shulha, I.V.; Kyzym, M.O.; Khaustova, V. A Feasibility Study of Different Methods of Gasification of Brown Coal for the Production of Synthetic Motor Fuel. Business Inform 2024, 2, 128–138. https://doi.org/10.32983/2222-4459-2024-2-128-138
[34] Hayvanovych, V.; Pysh'yev, S. Desulfurization of Low-Rank Coal with High Sulfur Content is the First Stage of Coal Burning at Heat Electric Stations. Energy Fuels 2003, 17, 1186–1190. https://doi.org/10.1021/ef0202945
[35] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D. Lignite Oxidative Desulphurization: Notice 3 -Process Technological Aspects and Application of Products. Int. J. Coal Sci. Technol. 2019, 6, 63–73. https://doi.org/10.1007/s40789-018-0228-z
[36] Pyshyev, S.; Prysiazhnyi, Y.; Shved, M.; Namiesnik, J.; Bratychak, M. State of the Art in the Field of Emission Reduction of Sulphur Dioxide Produced During Coal Combustion. Critical Rev. Environ. Sci. Technol. 2017, 47, 2387–2414. https://doi.org/10.1080/10643389.2018.1426968
[37] Pyshyev, S.; Prysiazhnyi, Y.; Sidun, Iu.; Shved, M.; Kochubei, V.; Borbeyiyong, I.; Korsh, D. Obtaining of Resins Based on Model Mixtures with Indene, Coumarone and Styrene and their Usage as Bitumen Modifiers. Pet. Coal 2020, 6, 341–346.
[38] Sidun, I.; Solodkyy, S.; Shved, M.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar. 5. Emulsions on the Basis of Bitumen Modified by Coumarone-Indene Resins with Epoxy Groups. Chem. Chem. Technol. 2019, 13, 489–494. https://doi.org/10.23939/chcht13.04.489
[39] Prysiazhny, Yu.; Pyshyev, S.; Shved, M.; Pochapska, I.; Niavkevych, M. Plasticizing Additive to Road Bitumens Based on High-Sulfur Brown Coal. Chem. Chem. Technol. 2024, 18, 623–629. https://doi.org/10.23939/chcht18.04.623