Valorization of Lignite Use in “Green” Technologies: A Review

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Denis Miroshnichenko1, Vladimir Lebedev1, Mariia Shved2, Oleh Fedevych2, Serhiy Pyshyev2
Affiliation: 
1 National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova St., 61002 Kharkiv, Ukraine 2 Lviv Polytechnic National University, 12 Bandera St., 79013 Lviv, Ukraine dvmir79@gmail.com
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf711.13 KB
Abstract: 
The increased utilization of lignite in "green" technologies represents a critical step toward the rational use and valorization of low-grade fossil fuels. This study examines the current state of lignite deposits in Ukraine and explores its potential applications in non-energy and environmentally sustainable energy sectors. The chemical composition of humic acids derived from brown coal was analyzed, along with their ability to undergo hybrid modification with biodegradable materials such as hydrogels, biofilms, and composites. The potential of lignite-based humic acids as sorbents for the removal of heavy metals from wastewater was evaluated, highlighting their role in ecological remediation. Special attention was given to the process of low-temperature gasification of lignite for the production of additives to polymer-modified bitumen. The results confirm the feasibility of developing innovative lignite processing methods in accordance with the principles of "green" technologies.
References: 

[1] Miroshnichenko, D.V.; Pyshyev, S.V.; Lebedev, V.V.; Bilets, D.Y. Deposits and Quality Indicators of Brown Coal in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 3, 5–10. https://doi.org/10.33271/nvngu/2022-3/005
[2] Perelik rodovyshch buroho vuhillia, oblikovanykh Derzhavnym balansom zapasiv korysnykh kopalyn Ukrainy na 01.01.2024 r. Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy 2024.
[3] A Socially Sustainable Coal Phase-Out in Ukraine. Low Carbon Ukraine, 2019. Test procedure and technical conditions, 2018. https://www.lowcarbonukraine.com/wp-content/uploads/A-socially-sustainab... (accessed 2025-01-24)
[4] Shustov, O.O.; Bielov, O.P.; Perkova, T.I.; Adamchuk, A.A. Substantiation of the Ways to Use Lignite Concerning the Integrated Development of Lignite Deposits of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2018, 3, 5–13. https://doi.org/10.29202/nvngu/2018-3/6
[5] Pyshiev, S.; Miroshnychenko D.; Shved M. Reiestr rodovyshch buroho vuhillia Ukrainy, yaki rekomendovano vykorystovuvaty v "zelenykh" tekhnolohiiakh: dovidnyk; SPOLOM: Ternopil, 2024.
[6] Lebedev, V.; Lebedeva, K.; Cherkashina, А.; Petrushenko, S.; Bogatyrenko, S.; Olkhovska, А.; Hrubnyk, I.; Maloshtan, L.; Kopach, V.; Klochko, N. Hemostatic Gelatin-Alginate Hydrogels Modified with Humic Acids and Impregnated with Aminocaproic Acid. J. Res. Updates Polym. Sci. 2024, 13, 34–44. https://doi.org/10.6000/1929-5995.2024.13.05
[7] Miroshnichenko, D.; Lebedeva, K.; Lebedev, V.; Cherkashina, А.; Petrushenko, S.; Hrubnyk, I.; Yudina, Y.; Bogoyavlenska, O.; Klochko, N.; Lysenko, L.; et al. Hemostatic Ability of Thermosensitive Biologically Active Gelatin-Alginate Hydrogels Modified with Humic Acids and Impregnated with Aminocaproic Acid. J. Res. Updates Polym. Sci. 2024, 13, 155–160. https://doi.org/10.6000/1929-5995.2024.13.16
[8] Miroshnichenko, D.; Lebedev, V.; Lebedeva, K.; Cherkashina, А.; Petrushenko, S.; Bogoyavlenska, O.; Olkhovska, А.; Hrubnyk, I.; Maloshtan, L.; Klochko, N. Thermosensitive and Wound-Healing Gelatin-Alginate Biopolymer Hydrogels Modified with Humic Acids. J. Renew. Mater. 2024, 12, 1691–1713. https://doi.org/10.32604/jrm.2024.054769
[9] Tang, Y.; Wang, X.; Yang, Y.; Gao, B.; Wan, Y.; Li, Y.C.; Cheng, D. Activated-Lignite-Based Super Large Granular Slow-Release Fertilizers Improve Apple Tree Growth: Synthesis, Characterizations, and Laboratory and Field Evaluations. J. Agric. Food Chem. 2017, 65, 5879–5889.
[10] Lebedeva, K.; Klochko, N.; Miroshnichenko, D.; Cherkashina, A.; Bogoyavlenska, O.; Lebedev V., Design and Research of Thermo-Responsive Gelatin-Alginate-Humic Nanocomposite Hydrogels for Controlled Drug Delivery, 2024. IEEE 14th International Conference Nanomaterials: Applications & Properties (NAP), Riga, Latvia, 2024. https://doi.org/10.1109/NAP62956.2024.10739758
[11] Lebedev, V.; Miroshnichenko, D.; Bilets, D.; Mysiak, V. Investigation of Hybrid Modification of Eco-Friendly Polymers by Humic Substances. Solid State Phenom. 2022, 334, 154–161. https://doi.org/10.4028/p-gv30w7
[12] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D. Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Pet. Coal 2021, 63, 646–654.
[13] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of Humic Acids from LowGrade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol. Pet. Coal 2021, 63, 953–962.
[14] Lebedev, V.; Sizhuo, D.; Xiaobin, Z.; Miroshnichenko, D.; Pyshyev, S.; Savchenko, D. Hybrid Modification of Eco-Friendly Biodegradable Polymeric Films by Humic Substances from Low Grade Metamorphism Coal. Pet. Coal 2022, 64, 539–546.
[15] Lebedev, V.; Miroshnichenko, D.; Vytrykush, N.; Pyshyev, S.; Masikevych, A.; Filenko, O.; Tsereniuk, O.; Lysenko, L. Novel Biodegradable Polymers Modified by Humic Acids. Mater. Chem. Phys. 2024, 313, 128778. https://doi.org/10.1016/j.matchemphys.2023.128778
[16] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
[17] Miroshnichenko, D.; Lebedeva, K.; Cherkashina, A.; Lebedev, V.; Tsereniuk, O.; Krygina, N. Study of Hybrid Modification with Humic Acids of Environmentally Safe Biodegradable Hydrogel Films Based on Hydroxypropyl Methylcellulose. C-J. Carbon Res. 2022, 8, 71. https://doi.org/10.3390/c8040071
[18] Lebedev, V.; Miroshnichenko, D.; Savchenko, D.; Bilets, D.; Mysiak, V.; Tykhomyrova, T. Computer Modeling of Chemical Composition of Hybrid Biodegradable Composites. In Information Technology for Education, Science, and Technics. ITEST 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 178; Faure, E.; Danchenko, O.; Bondarenko, M.; Tryus, Y.; Bazilo, C.; Zaspa, G., Eds.; Springer Cham., 2023. https://doi.org/10.1007/978-3-031-35467-0_27
[19] Lebedev, V.; Tykhomyrova, T.; Miroshnichenko, D.; Filenko, O.; Kariev, A.; Grigorova, T. Design and Research of Environmental Friendly Polymeric Materials Modified by Humic Substances. AIP Conf. Proc. 2023, 2684, 040014. https://doi.org/10.1063/5.0119925
[20] Esfandiar, N.; Suri, R.; McKenzie, E.R. Competitive Sorption of Cd, Cr, Cu, Ni, Pb and Zn from Stormwater Runoff by Five Low-Cost Sorbents; Effects of Co-Contaminants, Humic Acid, Salinity and pH. J. Hazard. Mater. 2022, 423, 126938. https://doi.org/10.1016/j.jhazmat.2021.126938
[21] Faisal, A.A.; Abdul-Kareem, M.B.; Mohammed, A.K.; Naushad, M.; Ghfar, A.A.; Ahamad, T. Humic Acid Coated Sand as a Novel Sorbent in Permeable Reactive Barrier for Environmental Remediation of Groundwater Polluted with Copper and Cadmium Ions. J. Water Process Eng. 2020, 36, 101373. https://doi.org/10.1016/j.jwpe.2020.101373
[22] Zhon, H.Z.; Liu, P.; Su, X.C.; Liao, Y.H.; Lei, N.Sh.; Liang, Y.H.; Zhou, S.H.; Lin, W.S.; Chen, J.; Feng, Y.Q.; et al. Low-Cost Humic Acid-Bonded Silica as an Effective Solid-Phase Extraction Sorbent for Convenient Determination of Aflatoxins in Edible Oils. Analytica Chimica Acta 2017, 970, 38–46. https://doi.org/10.1016/j.aca.2017.02.029
[23] Esmaeilian, A.; O'Shea, K.E. Application of Dimensional Analysis in Sorption Modeling of the Styryl Pyridinium Cationic Dyes on Reusable Iron Based Humic Acid Coated Magnetic Nanoparticles. Chemosphere 2022, 286, 131699. https://doi.org/10.1016/j.chemosphere.2021.131699
[24] Noli F.; Fedorcea, V.; Misaelides, P.; Cretescu, I.; Kapnisti, M. Cesium and Barium Removal from Aqueous Solutions in the Presence of Humic Acid and Competing Cations by a Greek Bentonite from Kimolos Island. Appl. Radiat. Isot. 2021, 170, 109600. https://doi.org/10.1016/j.apradiso.2021.109600
[25] Zhang, Y.; Fein, J.; Yu, Q.; Liu, D.; Feng, Y.; Zu, B.; Zheng, C. Surface Complexation Modeling of the Effects of Dissolved Inorganic Carbon on Absorption of U(VI) onto Fe3O4 Nanoparticles Coated with Lignite Humic Acid. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 629, 127260. https://doi.org/10.1016/j.colsurfa.2021.127260
[26] Sarlaki, E.; Paghaleh, A.S.; Hossein, K.M.; Keyvan, A.V. Valorization of Lignite Wastes into Humic Acids: Process Optimization, Energy Efficiency and Structural Features Analysis. Renew. Energy 2021, 163, 105–122. https://doi.org/10.1016/j.renene.2020.08.096
[27] Wang, Y.; Ma, Y.; Mo, W.; Gong, W.; Ma, F.; Wei, X.; Fan, X.; Zhang, S. Functional Groups of Sequential Extracts and Corresponding Residues from Hefeng Subbituminous Coal Based on FT-IR Analysis. J. Fuel Chem. Technol. 2021, 49, 890–901. https://doi.org/10.1016/S1872-5813(21)60055-5
[28] Wang, J.; Tian, L.; Li, G.; Zhao, X.; Liang, Y.; Yu, J. Construction of Vitrinite Molecular Structures Based on 13C NMR and FT-IR Analysis: Fundamental Insight into Coal Thermoplastic Properties. Fuel 2021, 300, 120981. https://doi.org/10.1016/j.fuel.2021.120981
[29] Zhao, Y.; Xing, C.; Shao, C.; Gang, C.; Sun, S.; Chen, G.; Zhang, L.; Pei, J.; Qin, P.; Guo S. Impacts of Intrinsic Alkali and Alkaline Earth Metals on Chemical Structure of Low-Rank Coal Char: Semi-Quantitative Results Based on FT-IR Structure Parameters. Fuel 2020, 278, 118229. https://doi.org/10.1016/j.fuel.2020.118229
[30] Yang, J.; Ma, L.; Yang, J.; Guo, Z.; Liu, H.; Zhang, W. Gasification Performance and Mechanism of High-Silicon Phosphogypsum Oxygen Carrier in Chemical Looping Gasification. Energy Fuel 2019, 33, 11768–11780. https://doi.org/10.1021/acs.energyfuels.9b02042
[31] Du, W.; Ma, L.; Pan, Q.; Dai, Q.; Zhang, M.; Yin, X.; Xiong, X.; Zhang, W. Full-Loop CFD Simulation of Lignite Chemical Looping Gasification with Phosphogypsum as Oxygen Carrier Using a Circulating Fluidized Bed. Energy, 2023, 262, 125451. https://doi.org/10.1016/j.energy.2022.125451
[32] Bhattacharyya, S.; Fan, L.; Azam, S.; Liu, S. Advances in coal mining technology and sustainable mining techniques. In Woodhead Publishing Series in Energy. The Coal Handbook (Second Edition), vol. 1; Woodhead Publishing 2023; pp. 263–321.
[33] Kotlyarov, Y.; Shulha, I.V.; Kyzym, M.O.; Khaustova, V. A Feasibility Study of Different Methods of Gasification of Brown Coal for the Production of Synthetic Motor Fuel. Business Inform 2024, 2, 128–138. https://doi.org/10.32983/2222-4459-2024-2-128-138
[34] Hayvanovych, V.; Pysh'yev, S. Desulfurization of Low-Rank Coal with High Sulfur Content is the First Stage of Coal Burning at Heat Electric Stations. Energy Fuels 2003, 17, 1186–1190. https://doi.org/10.1021/ef0202945
[35] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D. Lignite Oxidative Desulphurization: Notice 3 -Process Technological Aspects and Application of Products. Int. J. Coal Sci. Technol. 2019, 6, 63–73. https://doi.org/10.1007/s40789-018-0228-z
[36] Pyshyev, S.; Prysiazhnyi, Y.; Shved, M.; Namiesnik, J.; Bratychak, M. State of the Art in the Field of Emission Reduction of Sulphur Dioxide Produced During Coal Combustion. Critical Rev. Environ. Sci. Technol. 2017, 47, 2387–2414. https://doi.org/10.1080/10643389.2018.1426968
[37] Pyshyev, S.; Prysiazhnyi, Y.; Sidun, Iu.; Shved, M.; Kochubei, V.; Borbeyiyong, I.; Korsh, D. Obtaining of Resins Based on Model Mixtures with Indene, Coumarone and Styrene and their Usage as Bitumen Modifiers. Pet. Coal 2020, 6, 341–346.
[38] Sidun, I.; Solodkyy, S.; Shved, M.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar. 5. Emulsions on the Basis of Bitumen Modified by Coumarone-Indene Resins with Epoxy Groups. Chem. Chem. Technol. 2019, 13, 489–494. https://doi.org/10.23939/chcht13.04.489
[39] Prysiazhny, Yu.; Pyshyev, S.; Shved, M.; Pochapska, I.; Niavkevych, M. Plasticizing Additive to Road Bitumens Based on High-Sulfur Brown Coal. Chem. Chem. Technol. 2024, 18, 623–629. https://doi.org/10.23939/chcht18.04.623