Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Oкиснення 1,7-октадієну молекулярним киснем у рідинній фазі у присутності силіцидів металів на початкових стадіх

Oksana Makota1, Zoryana Komarenska2, Lilianna Oliynyk3
Affiliation: 
1 Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine oksana.i.makota@lpnu.ua
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf768.55 KB
Abstract: 
Досліджено вплив силіцидів металів, TiSi₂, VSi₂, MoSi₂, HfSi₂, TaSi₂ та WSi₂, на початкові стадії процесу рідиннофазного окиснення 1,7-октадієну молекулярним киснем. Встановлено, що наявність гомогенного ініціатора радикальних процесів — трет-бутилгідропероксиду — є необхідною умовою для перебігу реакції окиснення. VSi₂ є найкращим каталізатором для окиснення 1,7-октадієну. VSi₂ і MoSi₂ проявляють відмінну стабільність при багаторазовому використанні протягом п’яти циклів без істотної втрати каталізаторної активності. VSi₂ і MoSi₂ до та після реакції окиснення були охарактеризовані методами рентгенівської дифракції й інфрачервоної спектроскопії.
References: 

[1] Kang, J.; Park, E.D. Liquid-Phase Selective Oxidation of Methane to Methane Oxygenates. Catalysts 2024, 14, 167. https://doi.org/10.3390/catal14030167
[2] Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen Peroxide: A Key Chemical for Today’s Sustainable Development. ChemSusChem 2016, 9, 3374–3381. https://doi.org/10.1002/cssc.201600895
[3] Kim, M.S.; Yang, G.S.; Park, E.D. Effects of Cu Species on Liquid-Phase Partial Oxidation of Methane with H₂O₂ over Cu-Fe/ZSM-5 Catalysts. Catalysts 2022, 12, 1224. https://doi.org/10.3390/catal12101224
[4] Liu, R.; Wu, H.; Shi, J.; Xu, X.; Zhao, D.; Ng, Y.H.; Zhang, M.; Liu, S.; Ding, H. Recent Progress on Catalysts for Catalytic Oxidation of Volatile Organic Compounds: A Review. Catal. Sci. Technol. 2022, 12, 6945–6991. https://doi.org/10.1039/D2CY01181F
[5] Rizescu, C.; El Fergani, M.; Eftemie, D.-I. Liquid Phase Oxidation of Alkenes and Glycerol with Molecular Oxygen over Mixed-Ligand Copper(II) Complexes Grafted on GO as Catalysts. Appl. Catal. A Gen. 2023, 663, 119302. https://doi.org/10.1016/j.apcata.2023.119302
[6] Denekamp, I.M.; Antens, M.; Slot, T.K.; Rothenberg, G. Selective Catalytic Oxidation of Cyclohexene with Molecular Oxygen: Radical versus Nonradical Pathways. ChemCatChem 2018, 10, 1035–1041. https://doi.org/10.1002/cctc.201701538
[7] Vidal, F.; Smith, S.; Williams, C.K. Ring Opening Copolymerization of Boron-Containing Anhydride with Epoxides as a Controlled Platform to Functional Polyesters. J. Am. Chem. Soc. 2023, 145, 13888–13900. https://doi.org/10.1021/jacs.3c03261
[8] Hanif, M.; Zahoor, A.F.; Saif, M.J.; Nazeer, U.; Ali, K.G.; Parveen, B.; Mansha, A.; Chaudhry, A.R.; Irfan, A. Exploring the Synthetic Potential of Epoxide Ring Opening Reactions toward the Synthesis of Alkaloids and Terpenoids: A Review. RSC Adv. 2024, 14, 13100–13128. https://doi.org/10.1039/D4RA01834F
[9] Printz, G.; Shuvo, R.G.; Schweizer, A.; Ryzhakov, D.; Gourlaouen, C.; Lantigner, L.; Jacques, B.; Messaoudi, S.; Le Bideau, F.; Dagorne, S. N-Heterocyclic Carbene-Initiated Epoxide/Anhydride Ring-Opening Copolymerization: Effective and Selective Organoinitiators for the Production of Various Polyesters. Polym. Chem. 2024, 15, 3901–3906. https://doi.org/10.1039/D4PY00778F
[10] Mitani, R.; Yamamoto, H.; Sumimoto, M. Theoretical Study of the Reaction Mechanism of Phenol–Epoxy Ring-Opening Reaction Using a Latent Hardening Accelerator and a Reactivity Evaluation by Substituents. Molecules 2023, 28, 694. https://doi.org/10.3390/molecules28020694
[11] Kayano, K.; Tsutsumi, T.; Murata, Y.; Ogasa, C.; Watanabe, T.; Sato, R.; Karanjit, S.; Namba, K. Epoxide Ring-Opening Reactions for Abundant Production of Mugineic Acids and Nicotianamine Probes. Angew. Chem. Int. Ed. 2024, 63, e202401411. https://doi.org/10.1002/anie.202401411
[12] Zhao, Y.; Yu, Y.; Li, J.; Xie, J.; He, C. Hydrodechlorination under O₂ Promotes Catalytic Oxidation of CVOCs over Pt/TiO₂ Catalyst at Low Temperature. Chem. Commun. 2025, 61, 4710–4713. https://doi.org/10.1039/D4CC06366J
[13] He, X.; Zhang, Y.; Wang, L.; Li, J.; Liu, Y. Propene Epoxidation with Molecular Oxygen: Advancements from Nanoparticle to Single-Atom Catalysts. Smart Molecules 2024, 3, 25. https://doi.org/10.1002/smo.20240025
[14] Yu, X.; Mao, J.; Wu, B.; Wei, Y.; Sun, Y.; Zhong, L. Boosting Direct Oxidation of Methane with Molecular Oxygen at Low Temperature over Rh/ZSM-5 Catalyst. ChemCatChem 2023, 15, e202300077. https://doi.org/10.1002/cctc.202300077
[15] Yan, L.; Wang, S.; Qian, C.; Zhou, S. Enhancing Oxygen Activation toward Promoted Photocatalytic Oxidation of Methane to Liquid Oxygenates with ReO₂@TiO₂: The Regulation of Oxygen Affinity. J. Mater. Chem. A 2025, 13, 4662–4672. https://doi.org/10.1039/D4TA07559E
[16] Wang, H.; Xin, W.; Zheng, X.; Zhang, Y.; Li, J.; Wang, X. Mild Oxidation of Methane to Oxygenates with O₂ and CO on Fluorine Modified TS-1 Supported Rh Single-Atom Catalyst in a Flow Reactor. Catal. Lett. 2024, 154, 259–269. https://doi.org/10.1007/s10562-023-04298-y
[17] He, F.; Xu, L.; Wang, H.; Jiang, C. Recent Progress in Molecular Oxygen Activation by Iron-Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites. Toxics 2024, 12, 773. https://doi.org/10.3390/toxics12110773
[18] Yang, X.; Li, Y.; Zhang, Y.; Wang, Y.; Liu, Y.; Xu, Y.; Zhang, Y.; Wang, X. Controlling Metal-Oxide Reducibility for Efficient C–H Bond Activation in Hydrocarbons. Angew. Chem. Int. Ed. 2023, 62, e202310062. https://doi.org/10.1002/anie.202310062
[19] Wang, Y.; Liu, Y.; Su, Q.; Li, Y.; Deng, L.; Dong, L.; Fu, M.; Liu, S.; Cheng, W. Poly(Ionic Liquid) Materials Tailored by Carboxyl Groups for the Gas Phase-Conversion of Epoxide and CO₂ into Cyclic Carbonates. J. CO₂ Util. 2022, 60, 101976. https://doi.org/10.1016/j.jcou.2022.101976
[20] Doiuchi, Y.; Nakamura, Y.; Kato, M.; Oi, S. Acid-Cooperative Transition Metal-Catalysed Oxygen-Atom-Transfer: Ruthenium-Catalysed C–H Oxygenation. Adv. Synth. Catal. 2024, 366, 1005–1013. https://doi.org/10.1002/adsc.202301453
[21] Etim, U.J.; Bai, P.; Gazit, O.M.; Zhong, Z. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. Catal. Rev. 2023, 65, 239–425. https://doi.org/10.1080/01614940.2021.1919044
[22] Makota, O.; Lisnichuk, M.; Briančin, J.; Bednarčík, J.; Bondarchuk, O.; Melnyk, I. Magnetically Enhanced Fe₃O₄@ZnO and Fe₃O₄@ZnO@Bi₂O₂.₇ Composites for Efficient UV and Visible Light Photodegradation of Methyl Orange and Ofloxacin. Chemosphere 2025, 377, 144365. https://doi.org/10.1016/j.chemosphere.2025.144365
[23] Makota, O.; Dutková, E.; Briančin, J.; Bednarcik, J.; Lisnichuk, M.; Yevchuk, I.; Melnyk, I. Advanced Photodegradation of Azo Dye Methyl Orange Using H₂O₂-Activated Fe₃O₄@SiO₂@ZnO Composite under UV Treatment. Molecules 2024, 29, 1190. https://doi.org/10.3390/molecules29061190
[24] Makota, O.; Yankovych, H. B.; Bondarchuk, O.; Saldan, I.; Melnyk, I. Sphere-Shaped ZnO Photocatalyst Synthesis for Enhanced Degradation of the Quinolone Antibiotic, Ofloxacin, under UV Irradiation. Environ. Sci. Pollut. Res. 2024, 31, 33619. https://doi.org/10.1007/s11356-024-33619-w
[25] Komarenska, Z.; Oliynyk, L.; Makota, O. Activation of Mo₂B Catalyst in the Epoxidation Reaction of α-Ethylallyl Ethyl Acrylate with tert-Butyl Hydroperoxide. Chem. Chem. Technol. 2023, 17, 18–23. https://doi.org/10.23939/chcht17.01.018
[26] Ischenko, O. V.; Dyachenko, A. G.; Saldan, I.; Lisnyak, V. V.; Diyuk, V. E.; Vakaliuk, A. V.; Yatsymyrskyi, A. V.; Gaidai, S. V.; Zakharova, T. M.; Makota, O.; et al. Methanation of CO₂ on Bulk Co–Fe Catalysts. Int. J. Hydrogen Energy 2021, 46, 37860–37871. https://doi.org/10.1016/j.ijhydene.2021.09.034
[27] Khalameida, S.; Samsonenko, M.; Sydorchuk, V.; Zakutevskyy, O.; Starchevskyy, V.; Lakhnik, A. Improving the Photocatalytic Properties of Tin Dioxide Doped with Titanium and Copper in the Degradation of Rhodamine B and Safranin T. React. Kinet. Mech. Catal. 2022, 135, 1665–1685. https://doi.org/10.1007/s11144-022-02206-w
[28] Starchevskyy, V.; Shparij, M.; Hrynchuk, Y.; Reutskyy, V.; Kurta, S.; Hatsevych, O. Modification of the Catalytic System for the Industrial Chlorine Processing of Ethylene in 1,2-Dichloroethane. Chem. Chem. Technol. 2020, 14, 394–402. https://doi.org/10.23939/chcht14.03.394
[29] Shpariy, M.; Starchevskyy, V.; Znak, Z.; Mnykh, R.; Poliuzhyn, I. Extraction of Iron-Containing Catalyst from Chlororganic Wastes Generated by Ethylene Chlorination. East.-Eur. J. Enterp. Technol. 2020, 2(10(104)), 19–26. https://doi.org/10.15587/1729-4061.2020.201696
[30] Khalameida, S.V.; Samsonenko, M.N.; Sydorchuk, V.V.; Starchevskyy, V.L.; Zakutevskyy, O.I.; Khyzhun, O.Yu. Photocatalytic Properties of Tin Dioxide Doped with Chromium(III), Silver and Zinc Compounds in the Oxidation of Organic Substrates by the Action of Visible Light. Theor. Exp. Chem. 2017, 53, 40–46. https://doi.org/10.1007/s11237-017-9499-5
[31] Nikipanchuk, M.V.; Komarenskaya, Z.M.; Cherniy, M.O. On the Activation of Mo2B and MoB Catalysts in Oct-1-ene Epoxidation with tert-Butyl Hydroperoxide. Kinet. Catal. 2014, 55, 212–216. https://doi.org/10.1134/S0023158414020062
[32] Ahmad, I.; Aftab, M. A.; Fatima, A.; Mekkey, S. D.; Melhi, S.; Ikram, S. A Comprehensive Review on the Advancement of Transition Metals Incorporated on Functional Magnetic Nanocomposites for the Catalytic Reduction and Photocatalytic Degradation of Organic Pollutants. Coord. Chem. Rev. 2024, 514, 215904. https://doi.org/10.1016/j.ccr.2024.215904
[33] Chen, X.; Liang, C. Transition Metal Silicides: Fundamentals, Preparation and Catalytic Applications. Catal. Sci. Technol. 2019, 9, 4785–4820. https://doi.org/10.1039/C9CY00533A
[34] Yang, K.; Chen, X.; Wang, L.; Zhang, L.; Jin, S.; Liang, C. SBA-15-Supported Metal Silicides Prepared by Chemical Vapor Deposition as Efficient Catalysts Towards the Semihydrogenation of Phenylacetylene. ChemCatChem 2017, 9, 348–355. https://doi.org/10.1002/cctc.201601653
[35] Su, Y.; Xie, Y.; Qin, H.; Huang, Z.; Yin, Q.; Li, Z.; Zhang, R.; Zhao, Z.; Wu, F.; Ou, G. Ultrafine Molybdenum Silicide Nanoparticles as Efficient Hydrogen Evolution Electrocatalyst in Acidic Medium. Int. J. Hydrogen Energy 2022, 47, 28924–28931. https://doi.org/10.1016/j.ijhydene.2022.06.218
[36] Yang, X.; Wan, Y.; Li, J.; Liu, J.; Wang, M.; Tao, X. High Emissivity MoSi2-SiC-Al2O3 Coating on Rigid Insulation Tiles with Enhanced Thermal Protection Performance. Materials 2024, 17, 220. https://doi.org/10.3390/ma17010220
[37] Trach, Y. B. Specifics of Oxidation of Octene-1 with Molecular Oxygen on Vanadium Disilicide. Petrol. Chem. 2009, 49, 393–396. https://doi.org/10.1134/S0965544109050107
[38] Makota, O.I.; Trach, Y.B. Catalysis of 1-Octene Hydroperoxide Epoxidation Reaction by Metal Disilicides. Pol. J. Chem. 2008, 82, 345–352.
[39] Milas, N.A.; Surgenor, D.M. Studies in Organic Peroxides. VIII. t-Butyl Hydroperoxide and Di-t-butyl Peroxide. J. Am. Chem. Soc. 1946, 68, 205–208. https://doi.org/10.1021/ja01206a017
[40] Liang, Y.; Ouyang, J.; Wang, H.; Wang, W.; Chui, P.; Sun, K. Synthesis and Characterization of Core–Shell Structured SiO₂@YVO₄:Yb³⁺,Er³⁺ Microspheres. Appl. Surf. Sci. 2012, 258, 3689–3694. https://doi.org/10.1016/j.apsusc.2011.12.006
[41] Trach, Y.; Makota, O.; Skubiszewska-Zięba, J.; Borowiecki, T.; Leboda, R. FTIR Investigation into Transition Metal Disilicides as Catalysts for tert-Butyl Hydroperoxide Decomposition. Transit. Met. Chem. 2010, 35, 345–348. https://doi.org/10.1007/s11243-010-9333-6
[42] Makota, O.; Trach, Y.; Leboda, R.; Skubiszewska-Zięba, J. The Study of Cyclooctene Oxidation with Molecular Oxygen Catalyzed by VSi₂. Cent. Eur. J. Chem. 2009, 7, 731–738. https://doi.org/10.2478/s11532-009-0096-x
[43] Shafeeq, K.M.; Athira, V.P.; Raj Kishor, C.H.; Aneesh, P.M. Structural and Optical Properties of V₂O₅ Nanostructures Grown by Thermal Decomposition Technique. Appl. Phys. A 2020, 126, 586. https://doi.org/10.1007/s00339-020-03770-5
[44] Wen, A.; Cai, Z.; Zhang, Y.; Liu, H. A Novel Method of Preparing Vanadium-Based Precursors and Their Enhancement Mechanism in Vanadium Nitride Preparation. RSC Adv. 2022, 12, 13093–13101. https://doi.org/10.1039/d2ra00584k
[45] Musić, S.; Filipović-Vinceković, N.; Sekovanić, L. Precipitation of Amorphous SiO₂ Particles and Their Properties. Braz. J. Chem. Eng. 2011, 28, 89–94. https://doi.org/10.1590/S0104-66322011000100011
[46] Jun, S.E.; Choi, S.; Choi, S.; Lee, T. H.; Kim, C.; Yang, J. W.; Choe, W.-O.; Im, I.-H.; Kim, C.-J.; Jang, H.W. Direct Synthesis of Molybdenum Phosphide Nanorods on Silicon Using Graphene at the Heterointerface for Efficient Photoelectrochemical Water Reduction. Nano-Micro Lett. 2021, 13, 81. https://doi.org/10.1007/s40820 021 00605 7