Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Лужна делігніфікація лушпини какао (theobroma cacao l.) для екстракції целюлозних волокон

Andri Cahyo Kumoro1,2, Aji Prasetyaningrum1, Kristinah Haryani1, Ratnawati Ratnawati1, Yumna Agustia Nursalsabila1, Ziva Putri Yonanta,1 Misbahudin Alhanif3
Affiliation: 
1 Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. Jacub Rais, Semarang, 50275 Indonesia 2 Institute of Food and Remedies Biomaterials (INFARMA), Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. Jacub Rais, Semarang, 50275 Indonesia 3 Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sumatera, Lampung Selatan, 35365 Indonesia andrewkomoro@che.undip.ac.id
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf781.97 KB
Abstract: 
Як один із побічних продуктів переробки какао (Theobroma cacao L.), лушпиння какао-бобів містить близько 26,4% лігнінв'язаної целюлози. Тому для отримання целюлози високої чистоти необхідний процес делігніфікації, який полягає у видаленні лігніну. Мета цього дослідження – вилучення целюлози з лушпиння какао-бобів шляхом лужної делігніфікації з використанням розчину каустичної соди. Окрім концентрації лужного розчину та співвідношення рідини до твердої речовини, в цьому дослідженні було вивчено час і температуру лужної делігніфікації з метою визначення найкращих умов делігніфікації на основі виходу, чистоти та характеристик отриманої целюлози. Отримана целюлоза може бути використана в численних промислових застосуваннях.
References: 

[1] Baharum, Z.; Akim, A.M.; Hin, T.Y.Y.; Hamid, R.A.; Kasran, R. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-Cancer Compounds. Trop. Life Sci. Res. 2016, 27, 21–42.
[2] Caligiani, A.; Marseglia, A.; Palla, G. Cocoa: Production, Chemistry, and Use; Academic Press.: Oxford, 2016; pp 185–190. https://doi.org/10.1016/B978-0-12-384947-2.00177-X
[3] Kongor, J.E.; Hinneh, M.; Van de Walle, D.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors Influencing Quality Variation in Cocoa (Theobroma cacao) Bean Flavour Profile — A Review. Food Res. Int. 2016, 82, 44–52. https://doi.org/10.1016/j.foodres.2016.01.012
[4] FAOSTAT. Crops and livestock products. 2023. [Online]. Available: https://www.fao.org/faostat/en/#data/QCL (accessed 2025-02-10).
[5] Herrera-Barrios, A.; Puello-Mendez, J.; Pasqualino, J.C.; Lambis-Miranda, H.A. Agro-industrial Waste from Cocoa Pod Husk (Theobroma cacao L.), as a Potential Raw Material for Preparation of Cellulose Nanocrystals. Chem. Eng. Trans. 2022, 92, 205–210. https://doi.org/10.3303/CET2292035
[6] Aboyeji, C.; Olofintoye, J.; Olaleye, O.; Olugbemi, O.; Adetula, O. Influence of Cocoa Pod Husk Powder on the Performance of Black Benniseed under Basal Application Phosphorus Fertilizer in the Southern Guinea Savannah of Nigeria. Adv. Environ. Biol. 2016, 10, 78–83.
[7] Perrine-Walker, F. Phytophthora palmivora-Cocoa Interaction. J. fungi (Basel, Switzerland) 2020, 6, 1–20. https://doi.org/10.3390/jof6030167
[8] Baidoo, M.F.; Asiedu, N.Y.; Darkwah, L.; Arhin-Dodoo, D.; Zhao, J.; Jerome, F.; Amaniampong, P.N. Conventional and Unconventional Transformation of Cocoa Pod Husks into Value-Added Products. In Biomass, Biorefineries and Bioeconomy; Samer, M., Ed.; 2022. https://doi.org/10.5772/intechopen.102606
[9] Kusuma, H.S.; Yugiani, P.; Amenaghawon, A.N.; Darmokoesoemo, H. Carboxymethyl Cellulose-Blended Films from Rice Stubble as a New Potential Biopolymer Source to Reduce Agricultural Waste: A Mini Review. Chem. Chem. Technol. 2024, 18, 200–210. https://doi.org/10.23939/chcht18.02.200
[10] Kebede, N.W. Optimization of Hydrolysis in Ethanol Production from Bamboo. Chem. Chem. Technol. 2022, 16, 614–620. https://doi.org/10.23939/chcht16.04.614
[11] Ferreira-Villadiego, J.; Garcia-Echeverri, J.; Mejia, M.V.V.; Pasqualino, J.; Meza-Catellar, P.; Lambis, H. Chemical Modification and Characterization of Starch Derived from Plantain (Musa paradisiaca) Peel Waste, as a Source of Biodegradable Material. Chem. Eng. Trans. 2018, 65, 763–768. https://doi.org/10.3303/CET1865128
[12] Tian, D.; Shen, F.; Hu, J.; Huang, M.; Zhao, L.; He, J.; Li, Q.; Zhang, S.; Shen, F. Complete Conversion of Lignocellulosic Biomass into Three High-Value Nanomaterials through a Versatile Integrated Technical Platform. Chem. Eng. J. 2022, 428, 131373. https://doi.org/10.1016/j.cej.2021.131373
[13] Hussain, N.I.A.M.; Salim, N.; Mustapha, S.N.H.; Misnon, I.I.; Rahim, M.H.A.; Roslan, R. Lignocellulose Biomass Delignification Using Acid Hydrotrope As Green Solvent: A Mini-Review. Cellul. Chem. Technol. 2023, 57, 1017–1028. https://doi.org/10.35812/CelluloseChemTechnol.2023.57.90
[14] Alvarez-Barreto, J.F.; Larrea, F.; Pinos, M.C.; Benalcázar, J.; Oña, D.; Andino, C.; Viteri, D.A.; Leon, M.; Almeida-Streitwieser, D. Chemical Pretreatments on Residual Cocoa Pod Shell Biomass for Bioethanol Production. Bionatura 2021, 6, 1490–1500. https://doi.org/10.21931/RB/2020.06.01.9
[15] Ying, W.; Yang, J.; Zhang, J. In-situ Modification of Lignin in Alkaline-Pretreated Sugarcane Bagasse by Sulfomethylation and Carboxymethylation to Improve the Enzymatic Hydrolysis Efficiency. Ind. Crops Prod. 2022, 182, 114863. https://doi.org/10.1016/j.indcrop.2022.114863
[16] Ahmad, A.; Rahmad; Rita, N.; Noorjannah, L. Effect of Acid Hydrolysis on Bioethanol Production from Oil Palm Fruit Bunches. Mater. Today Proc. 2022, 63, S276–S281. https://doi.org/10.1016/j.matpr.2022.02.461
[17] Johannes, L.P.; Xuan, T.D. Comparative Analysis of Acidic and Alkaline Pretreatment Techniques for Bioethanol Production from Perennial Grasses. Energies 2024, 17, 1048. https://doi.org/10.3390/en17051048
[18] Gottumukkala, L.; Bedzo, O.; Hayes, D. Organosolv Pretreatment of Biomass. 2024. [Online]. Available: https://www.celignis.com/organosolv-pretreatment.php (accessed 2025-04-23).
[19] Nadir, N.; Hussain, A.S.; Ismail, N.L. Fungal Pretreatment of Lignocellulosic Materials. In Biomass for Bioenergy - Recent Trends and Future Challenges; El-Fatah Abomohra, A., Ed.; IntechOpen, 2019. https://doi.org/10.5772/intechopen.84239
[20] Saadan, R.; Alaoui, C.H.; Ihammi, A.; Chigr, M.; Fatimi, A. A Brief Overview of Lignin Extraction and Isolation Processes: From Lignocellulosic Biomass to Added-Value Biomaterials. Env. Earth Sci. Proc. 2024, 31, 3. https://doi.org/10.3390/eesp2024031003
[21] Muharja, M.; Darmayanti, R.F.; Palupi, B.; Rahmawati, I.; Fachri, B.A.; Setiawan, F.A.; Amini, H.W.; Rizkiana, M.F.; Rahmawati, A.; Susanti, A.; et al. Optimization of Microwave-Assisted Alkali Pretreatment for Enhancement of Delignification Process of Cocoa Pod Husk. Bull. Chem. React. Eng. Catal. 2021, 16, 31–43. https://doi.org/10.9767/BCREC.16.1.8872.31-43
[22] Tao, L.; Ren, J.; Yu, F.K.; Ni, T.R. Effects of Liquid-to-Solid Ratio and Reaction Temperature on NaOH Pretreatment of Achnatherum splendens. Asian J. Chem. 2013, 25, 3545–3548. https://doi.org/10.14233/ajchem.2013.13424
[23] Rafidah, J.; Mohd-Sahaid, K.; Norliza, A.R.; Aidil, A.H.; Mohd-Farid, A. Effect of Sodium Hydroxide Pretreatment on Chemical Composition of Treated Acacia Mangium Using Response Surface Methodology. J. Trop. For. Sci. 2020, 32, 391–401. https://doi.org/10.26525/jtfs2020.32.4.391
[24] Cahyani, I.M.; Adhyatmika; Lukitaningsih, E.; Sulaiman, T.N.S. Optimal Conditions for Alkaline Delignification Process in Cellulose Isolation from Sengon Wood Sawdust. Sci. Technol. Indones. 2023, 8, 666–674. https://doi.org/10.26554/sti.2023.8.4.666-674
[25] Ho, M.C.; Ong, V.Z.; Wu, T.Y. Potential Use of Alkaline Hydrogen Peroxide in Lignocellulosic Biomass Pretreatment and Valorization – A Review. Renew. Sustain. Energy Rev. 2018, 112, 75–86. https://doi.org/10.1016/j.rser.2019.04.082
[26] Amrillah, N.A.Z.; Hanum, F.F.; Rahayu, A.; Hapsari, A.B.V.; Nuraini. Optimization and Characterization Cellulose Content of Cocoa Pod Husk from Cocoa Fermentation Center in Gunung Kidul Regency, Indonesia Through the Extraction Process. J. Sains Nat. 2024, 14, 81–90. https://doi.org/10.31938/jsn.v14i2.703
[27] Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and Sustainable Pretreatment Methods for Cellulose Extraction from Lignocellulosic Biomass and its Applications: A Review. Carbohydr. Polym. Technol. Appl. 2023, 7, 100396. https://doi.org/10.1016/j.carpta.2023.100396
[28] Gungula, D.T.; Andrew, F.P.; Joseph, J.; Kareem, S.A.; Barminas, J.T.; Adebayo, E.F.; Saddiq, A.M.; Tame, V.T.; Dere, I.; Ahinda, W.J.; et al. Formulation and Characterization of Water Retention and Slow-Release Urea Fertilizer Based on Borassus aethiopum Starch and Maesopsis eminii Hydrogels. Results Mater. 2021, 12, 100223. https://doi.org/10.1016/j.rinma.2021.100223
[29] Thakur, M.; Nanda, V. Effect of Packaging Materials and Storage Conditions on Physico-Chemical, Phytochemical and Microstructural Properties of Bee Pollen Enriched Milk Powder. Food Chem. Adv. 2024, 4, 100567. https://doi.org/10.1016/j.focha.2023.100567
[30] Alam, M.M.; Greco, A.; Rajabimashhadi, Z.; Corcione, C.E. Efficient and Environmentally Friendly Techniques for Extracting Lignin from Lignocellulose Biomass and Subsequent Uses: A Review. Clean. Mater. 2024, 13, 100253. https://doi.org/10.1016/j.clema.2024.100253
[31] Utoro, P.A.R.; Alwi, M.; Witoyo, J.E.; Argo, B.D.; Yulianingsih, R.; Muryanto. Impact of NaOH Concentration and Pretreatment Time on the Lignocellulose Composition of Sweet Sorghum Bagasse for Second-Generation Bioethanol Production. Atlantis Press. 2023, 31, 198–206. https://doi.org/10.2991/978-94-6463-180-7_22
[32] Zhao, C.; Shao, Q.; Ma, Z.; Li, B.; Zhao, X. Physical and Chemical Characterizations of Corn Stalk Resulting from Hydrogen Peroxide Presoaking Prior to Ammonia Fiber Expansion Pretreatment. Ind. Crops Prod. 2016, 83, 86–93. https://doi.org/10.1016/j.indcrop.2015.12.018
[33] Li, J.; Zhang, J.; Zhang, S.; Gao, Q.; Li, J.; Zhang, W. Alkali Lignin Depolymerization under Eco-Friendly and Cost-Effective NaOH/Urea Aqueous Solution for Fast Curing Bio-Based Phenolic Resin. Ind. Crops Prod. 2018, 120, 25–33. https://doi.org/10.1016/j.indcrop.2018.04.027
[34] Li, Q.; Wang, A.; Ding, W.; Zhang, Y. Influencing Factors for Alkaline Degradation of Cellulose. BioResources 2017, 12, 1263–1272. https://doi.org/10.15376/biores.12.1.1263-1272
[35] Radzi, N.A.M.; Sofian, A.H.; Jamari, S.S. Structural Studies of Surface Modified Oil Palm Empty Fruit Bunch with Alkaline pre-Treatment as a Potential Filler for the Green Composite. J. Tribol. 2020, 26, 75–83.
[36] Dewi, I.A.; Ihwah, A.; Setyawan, H.Y.; Kurniasari, A.A.N.; Ulfah, A. Optimization of NaOH Concentration and Cooking Time in Delignification of Mature Coconut (Cocus nucifera L.) Coir. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012034. https://doi.org/10.1088/1755-1315/733/1/012034
[37] Sayakulu, N.F.; Soloi, S. The Effect of Sodium Hydroxide (NaOH) Concentration on Oil Palm Empty Fruit Bunch (OPEFB) Cellulose Yield. J. Phys. Conf. Ser. 2022, 2314, 012017. https://doi.org/10.1088/1742-6596/2314/1/012017
[38] Hernández-Beltrán, J.U.; Lira, I.O.H.; Cruz-Santos, M.M.; Saucedo-Luevanos, A.; Hernández-Terán, F.; Balagurusamy, N. Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities. Appl. Sci. 2019, 9, 3721. https://doi.org/10.3390/app9183721
[39] Shah, T.A.; Khalid, S.; Nafidi, H.-A.; Salamatullah, A.M.; Bourhia, M. Sodium Hydroxide Hydrothermal Extraction of Lignin from Rice Straw Residue and Fermentation to Biomethane. Sustainability 2023, 15, 8755. https://doi.org/10.3390/su15118755
[40] Shukla, A.; Kumar, D.; Girdhar, M.; Kumar, A.; Goyal, A.; Malik, T.; Mohan, A. Strategies of Pretreatment of Feedstocks for Optimized Bioethanol Production: Distinct and Integrated Approaches. Biotechnol. biofuels Bioprod. 2023, 16, 44. https://doi.org/10.1186/s13068-023-02295-2
[41] Yang, S.; Zhang, Y.; Yue, W.; Wang, W.; Wang, Y.; Yuan, T.; Sun, R. Valorization of Lignin and Cellulose in Acid-Steam-Exploded Corn Stover by a Moderate Alkaline Ethanol Post-Treatment Based on an Integrated Biorefinery Concept. Biotechnol. Biofuels 2016, 9, 238. https://doi.org/10.1186/s13068-016-0656-1
[42] Álvarez, C.; Duque, A.; Sánchez-Monedero, A.; González, E.J.; González-Miquel, M.; Cañadas, R. Exploring Recent Advances in Lignocellulosic Biomass Waste Delignification Through the Combined Use of Eutectic Solvents and Intensification Techniques. Processes 2024, 12, 2514. https://doi.org/10.3390/pr12112514
[43] Mikulski, D.; Kłosowski, G. Delignification Efficiency of Various Types of Biomass Using Microwave-Assisted Hydrotropic Pretreatment. Sci. Rep. 2022, 12, 4561. https://doi.org/10.1038/s41598-022-08717-9
[44] Fechter, C.; Fischer, S.; Reimann, F.; Brelid, H.; Heinze, T. Influence of Pulp Characteristics on the Properties of Alkali Cellulose. Cellulose 2020, 27, 7227–7241. https://doi.org/10.1007/s10570-020-03151-4
[45] Gomes, C.L.; Gonçalves, E.; Suarez, C.A.G.; Rodrigues, D.S.; Montano, I.C. Effect of Reaction Time and Sodium Hydroxide Concentration on Delignification and Enzymatic Hydrolysis of Brewer’s Spent Grain from Two Brazilian Brewers. Cellul. Chem. Technol. 2021, 55, 101–112. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.10
[46] Zhang, Y.; Wu, J.-Q.; Li, H.; Yuan, T.-Q.; Wang, Y.-Y.; Sun, R.-C. Heat Treatment of Industrial Alkaline Lignin and its Potential Application as an Adhesive for Green Wood–Lignin Composites. ACS Sustain. Chem. Eng. 2017, 5, 7269–7277. https://doi.org/10.1021/acssuschemeng.7b01485
[47] Widsten, P.; Murton, K.; Bowers, T. Bridson, J. Thumm, A.; Hill, S.; Tutt, K.; West, M.; Weinberg, G.; Burbin, G. Pilot-Scale Production of Hemicellulose Ethers from Softwood Hemicelluloses Obtained from Compression Screw Pressate of a Thermo-Mechanical Pulping Plant. Polymers 2023, 15, 2376. https://doi.org/10.3390/polym15102376
[48] Mukbaniani, O.; Tatrishvili, T.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807–819. https://doi.org/10.23939/chcht17.04.807
[49] Shimizu, S.; Yokoyama, T.; Matsumoto, Y. Effect of Type of Aromatic Nucleus in Lignin on the Rate of the β-O-4 Bond Cleavage During Alkaline Pulping Process. J. Wood Sci. 2015, 61, 529–536. https://doi.org/10.1007/s10086-015-1488-5