Alkaline Delignification of Cocoa (Theobroma cacao L.) Pod Husk for Cellulose Fibers Extraction

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Andri Cahyo Kumoro1,2, Aji Prasetyaningrum1, Kristinah Haryani1, Ratnawati Ratnawati1, Yumna Agustia Nursalsabila1, Ziva Putri Yonanta,1 Misbahudin Alhanif3
Affiliation: 
1 Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. Jacub Rais, Semarang, 50275 Indonesia 2 Institute of Food and Remedies Biomaterials (INFARMA), Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Jl. Prof. Jacub Rais, Semarang, 50275 Indonesia 3 Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sumatera, Lampung Selatan, 35365 Indonesia andrewkomoro@che.undip.ac.id
DOI: 
https://doi.org/10.23939/chcht19.04.687
AttachmentSize
PDF icon full_text.pdf781.97 KB
Abstract: 
As one of the cocoa (Theobroma cacao L.) processing by-products, cocoa pod husk contains about 26.4% lignin-bound cellulose. Therefore, a delignification process is required to obtain high-purity cellulose by removing the lignin. This study aims to extract cellulose from a cocoa pod husk through alkaline delignification using caustic soda solution. In addition to alkaline solution concentration and liquid-to-solid ratio, the time and temperature of the alkaline delignification were studied in this research to determine the best delignification conditions based on the yield, purity, and characteristics of the cellulose produced. The resulting cellulose can be further used in numerous industrial applications.
References: 

[1] Baharum, Z.; Akim, A.M.; Hin, T.Y.Y.; Hamid, R.A.; Kasran, R. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-Cancer Compounds. Trop. Life Sci. Res. 2016, 27, 21-42.

[2] Caligiani, A.; Marseglia, A.; Palla, G. Cocoa: Production, Chemistry, and Use; Academic Press.: Oxford, 2016; pp 185-190. https://doi.org/10.1016/B978-0-12-384947-2.00177-X
https://doi.org/10.1016/B978-0-12-384947-2.00177-X

[3] Kongor, J.E.; Hinneh, M.; Van de Walle, D.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors Influencing Quality Variation in Cocoa (Theobroma cacao) Bean Flavour Profile - A Review. Food Res. Int. 2016, 82, 44-52. https://doi.org/10.1016/j.foodres.2016.01.012
https://doi.org/10.1016/j.foodres.2016.01.012

[4] FAOSTAT. Crops and livestock products. 2023. [Online]. Available: https://www.fao.org/faostat/en/#data/QCL (accessed 2025-02-10).

[5] Herrera-Barrios, A.; Puello-Mendez, J.; Pasqualino, J.C.; Lambis-Miranda, H.A. Agro-industrial Waste from Cocoa Pod Husk (Theobroma cacao L.), as a Potential Raw Material for Preparation of Cellulose Nanocrystals. Chem. Eng. Trans. 2022, 92, 205-210. https://doi.org/10.3303/CET2292035

[6] Aboyeji, C.; Olofintoye, J.; Olaleye, O.; Olugbemi, O.; Adetula, O. Influence of Cocoa Pod Husk Powder on the Performance of Black Benniseed under Basal Application Phosphorus Fertilizer in the Southern Guinea Savannah of Nigeria. Adv. Environ. Biol. 2016, 10, 78-83.

[7] Perrine-Walker, F. Phytophthora palmivora-Cocoa Interaction. J. fungi (Basel, Switzerland) 2020, 6, 1-20. https://doi.org/10.3390/jof6030167
https://doi.org/10.3390/jof6030167

[8] Baidoo, M.F.; Asiedu, N.Y.; Darkwah, L.; Arhin-Dodoo, D.; Zhao, J.; Jerome, F.; Amaniampong, P.N. Conventional and Unconventional Transformation of Cocoa Pod Husks into Value-Added Products. In Biomass, Biorefineries and Bioeconomy; Samer, M., Ed.; 2022. https://doi.org/10.5772/intechopen.102606
https://doi.org/10.5772/intechopen.102606

[9] Kusuma, H.S.; Yugiani, P.; Amenaghawon, A.N.; Darmokoesoemo, H. Carboxymethyl Cellulose-Blended Films from Rice Stubble as a New Potential Biopolymer Source to Reduce Agricultural Waste: A Mini Review. Chem. Chem. Technol. 2024, 18, 200-210. https://doi.org/10.23939/chcht18.02.200
https://doi.org/10.23939/chcht18.02.200

[10] Kebede, N.W. Optimization of Hydrolysis in Ethanol Production from Bamboo. Chem. Chem. Technol. 2022, 16, 614-620. https://doi.org/10.23939/chcht16.04.614
https://doi.org/10.23939/chcht16.04.614

[11] Ferreira-Villadiego, J.; Garcia-Echeverri, J.; Mejia, M.V.V.; Pasqualino, J.; Meza-Catellar, P.; Lambis, H. Chemical Modification and Characterization of Starch Derived from Plantain (Musa paradisiaca) Peel Waste, as a Source of Biodegradable Material. Chem. Eng. Trans. 2018, 65, 763-768. https://doi.org/10.3303/CET1865128

[12] Tian, D.; Shen, F.; Hu, J.; Huang, M.; Zhao, L.; He, J.; Li, Q.; Zhang, S.; Shen, F. Complete Conversion of Lignocellulosic Biomass into Three High-Value Nanomaterials through a Versatile Integrated Technical Platform. Chem. Eng. J. 2022, 428, 131373. https://doi.org/10.1016/j.cej.2021.131373
https://doi.org/10.1016/j.cej.2021.131373

[13] Hussain, N.I.A.M.; Salim, N.; Mustapha, S.N.H.; Misnon, I.I.; Rahim, M.H.A.; Roslan, R. Lignocellulose Biomass Delignification Using Acid Hydrotrope As Green Solvent: A Mini-Review. Cellul. Chem. Technol. 2023, 57, 1017-1028. https://doi.org/10.35812/CelluloseChemTechnol.2023.57.90
https://doi.org/10.35812/CelluloseChemTechnol.2023.57.90

[14] Alvarez-Barreto, J.F.; Larrea, F.; Pinos, M.C.; Benalcázar, J.; Oña, D.; Andino, C.; Viteri, D.A.; Leon, M.; Almeida-Streitwieser, D. Chemical Pretreatments on Residual Cocoa Pod Shell Biomass for Bioethanol Production. Bionatura 2021, 6, 1490-1500. https://doi.org/10.21931/RB/2020.06.01.9
https://doi.org/10.21931/RB/2020.06.01.9

[15] Ying, W.; Yang, J.; Zhang, J. In-situ Modification of Lignin in Alkaline-Pretreated Sugarcane Bagasse by Sulfomethylation and Carboxymethylation to Improve the Enzymatic Hydrolysis Efficiency. Ind. Crops Prod. 2022, 182, 114863. https://doi.org/10.1016/j.indcrop.2022.114863
https://doi.org/10.1016/j.indcrop.2022.114863

[16] Ahmad, A.; Rahmad; Rita, N.; Noorjannah, L. Effect of Acid Hydrolysis on Bioethanol Production from Oil Palm Fruit Bunches. Mater. Today Proc. 2022, 63, S276-S281. https://doi.org/10.1016/j.matpr.2022.02.461
https://doi.org/10.1016/j.matpr.2022.02.461

[17] Johannes, L.P.; Xuan, T.D. Comparative Analysis of Acidic and Alkaline Pretreatment Techniques for Bioethanol Production from Perennial Grasses. Energies 2024, 17, 1048. https://doi.org/10.3390/en17051048
https://doi.org/10.3390/en17051048

[18] Gottumukkala, L.; Bedzo, O.; Hayes, D. Organosolv Pretreatment of Biomass. 2024. [Online]. Available: https://www.celignis.com/organosolv-pretreatment.php (accessed 2025-04-23).

[19] Nadir, N.; Hussain, A.S.; Ismail, N.L. Fungal Pretreatment of Lignocellulosic Materials. In Biomass for Bioenergy - Recent Trends and Future Challenges; El-Fatah Abomohra, A., Ed.; IntechOpen, 2019. https://doi.org/10.5772/intechopen.84239
https://doi.org/10.5772/intechopen.84239

[20] Saadan, R.; Alaoui, C.H.; Ihammi, A.; Chigr, M.; Fatimi, A. A Brief Overview of Lignin Extraction and Isolation Processes: From Lignocellulosic Biomass to Added-Value Biomaterials. Env. Earth Sci. Proc. 2024, 31, 3. https://doi.org/10.3390/eesp2024031003
https://doi.org/10.3390/eesp2024031003

[21] Muharja, M.; Darmayanti, R.F.; Palupi, B.; Rahmawati, I.; Fachri, B.A.; Setiawan, F.A.; Amini, H.W.; Rizkiana, M.F.; Rahmawati, A.; Susanti, A.; et al. Optimization of Microwave-Assisted Alkali Pretreatment for Enhancement of Delignification Process of Cocoa Pod Husk. Bull. Chem. React. Eng. Catal. 2021, 16, 31-43. https://doi.org/10.9767/BCREC.16.1.8872.31-43
https://doi.org/10.9767/bcrec.16.1.8872.31-43

[22] Tao, L.; Ren, J.; Yu, F.K.; Ni, T.R. Effects of Liquid-to-Solid Ratio and Reaction Temperature on NaOH Pretreatment of Achnatherum splendens. Asian J. Chem. 2013, 25, 3545-3548. https://doi.org/10.14233/ajchem.2013.13424
https://doi.org/10.14233/ajchem.2013.13424

[23] Rafidah, J.; Mohd-Sahaid, K.; Norliza, A.R.; Aidil, A.H.; Mohd-Farid, A. Effect of Sodium Hydroxide Pretreatment on Chemical Composition of Treated Acacia Mangium Using Response Surface Methodology. J. Trop. For. Sci. 2020, 32, 391-401. https://doi.org/10.26525/jtfs2020.32.4.391
https://doi.org/10.26525/jtfs2020.32.4.391

[24] Cahyani, I.M.; Adhyatmika; Lukitaningsih, E.; Sulaiman, T.N.S. Optimal Conditions for Alkaline Delignification Process in Cellulose Isolation from Sengon Wood Sawdust. Sci. Technol. Indones. 2023, 8, 666-674. https://doi.org/10.26554/sti.2023.8.4.666-674
https://doi.org/10.26554/sti.2023.8.4.666-674

[25] Ho, M.C.; Ong, V.Z.; Wu, T.Y. Potential Use of Alkaline Hydrogen Peroxide in Lignocellulosic Biomass Pretreatment and Valorization - A Review. Renew. Sustain. Energy Rev. 2018, 112, 75-86. https://doi.org/10.1016/j.rser.2019.04.082
https://doi.org/10.1016/j.rser.2019.04.082

[26] Amrillah, N.A.Z.; Hanum, F.F.; Rahayu, A.; Hapsari, A.B.V.; Nuraini. Optimization and Characterization Cellulose Content of Cocoa Pod Husk from Cocoa Fermentation Center in Gunung Kidul Regency, Indonesia Through the Extraction Process. J. Sains Nat. 2024, 14, 81-90. https://doi.org/10.31938/jsn.v14i2.703
https://doi.org/10.31938/jsn.v14i2.703

[27] Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and Sustainable Pretreatment Methods for Cellulose Extraction from Lignocellulosic Biomass and its Applications: A Review. Carbohydr. Polym. Technol. Appl. 2023, 7, 100396. https://doi.org/10.1016/j.carpta.2023.100396
https://doi.org/10.1016/j.carpta.2023.100396

[28] Gungula, D.T.; Andrew, F.P.; Joseph, J.; Kareem, S.A.; Barminas, J.T.; Adebayo, E.F.; Saddiq, A.M.; Tame, V.T.; Dere, I.; Ahinda, W.J.; et al. Formulation and Characterization of Water Retention and Slow-Release Urea Fertilizer Based on Borassus aethiopum Starch and Maesopsis eminii Hydrogels. Results Mater. 2021, 12, 100223. https://doi.org/10.1016/j.rinma.2021.100223
https://doi.org/10.1016/j.rinma.2021.100223

[29] Thakur, M.; Nanda, V. Effect of Packaging Materials and Storage Conditions on Physico-Chemical, Phytochemical and Microstructural Properties of Bee Pollen Enriched Milk Powder. Food Chem. Adv. 2024, 4, 100567. https://doi.org/10.1016/j.focha.2023.100567
https://doi.org/10.1016/j.focha.2023.100567

[30] Alam, M.M.; Greco, A.; Rajabimashhadi, Z.; Corcione, C.E. Efficient and Environmentally Friendly Techniques for Extracting Lignin from Lignocellulose Biomass and Subsequent Uses: A Review. Clean. Mater. 2024, 13, 100253. https://doi.org/10.1016/j.clema.2024.100253
https://doi.org/10.1016/j.clema.2024.100253

[31] Utoro, P.A.R.; Alwi, M.; Witoyo, J.E.; Argo, B.D.; Yulianingsih, R.; Muryanto. Impact of NaOH Concentration and Pretreatment Time on the Lignocellulose Composition of Sweet Sorghum Bagasse for Second-Generation Bioethanol Production. Atlantis Press. 2023, 31, 198-206. https://doi.org/10.2991/978-94-6463-180-7_22
https://doi.org/10.2991/978-94-6463-180-7_22

[32] Zhao, C.; Shao, Q.; Ma, Z.; Li, B.; Zhao, X. Physical and Chemical Characterizations of Corn Stalk Resulting from Hydrogen Peroxide Presoaking Prior to Ammonia Fiber Expansion Pretreatment. Ind. Crops Prod. 2016, 83, 86-93. https://doi.org/10.1016/j.indcrop.2015.12.018
https://doi.org/10.1016/j.indcrop.2015.12.018

[33] Li, J.; Zhang, J.; Zhang, S.; Gao, Q.; Li, J.; Zhang, W. Alkali Lignin Depolymerization under Eco-Friendly and Cost-Effective NaOH/Urea Aqueous Solution for Fast Curing Bio-Based Phenolic Resin. Ind. Crops Prod. 2018, 120, 25-33. https://doi.org/10.1016/j.indcrop.2018.04.027
https://doi.org/10.1016/j.indcrop.2018.04.027

[34] Li, Q.; Wang, A.; Ding, W.; Zhang, Y. Influencing Factors for Alkaline Degradation of Cellulose. BioResources 2017, 12, 1263-1272. https://doi.org/10.15376/biores.12.1.1263-1272
https://doi.org/10.15376/biores.12.1.1263-1272

[35] Radzi, N.A.M.; Sofian, A.H.; Jamari, S.S. Structural Studies of Surface Modified Oil Palm Empty Fruit Bunch with Alkaline pre-Treatment as a Potential Filler for the Green Composite. J. Tribol. 2020, 26, 75-83.

[36] Dewi, I.A.; Ihwah, A.; Setyawan, H.Y.; Kurniasari, A.A.N.; Ulfah, A. Optimization of NaOH Concentration and Cooking Time in Delignification of Mature Coconut (Cocus nucifera L.) Coir. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012034. https://doi.org/10.1088/1755-1315/733/1/012034
https://doi.org/10.1088/1755-1315/733/1/012034

[37] Sayakulu, N.F.; Soloi, S. The Effect of Sodium Hydroxide (NaOH) Concentration on Oil Palm Empty Fruit Bunch (OPEFB) Cellulose Yield. J. Phys. Conf. Ser. 2022, 2314, 012017. https://doi.org/10.1088/1742-6596/2314/1/012017
https://doi.org/10.1088/1742-6596/2314/1/012017

[38] Hernández-Beltrán, J.U.; Lira, I.O.H.; Cruz-Santos, M.M.; Saucedo-Luevanos, A.; Hernández-Terán, F.; Balagurusamy, N. Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities. Appl. Sci. 2019, 9, 3721. https://doi.org/10.3390/app9183721
https://doi.org/10.3390/app9183721

[39] Shah, T.A.; Khalid, S.; Nafidi, H.-A.; Salamatullah, A.M.; Bourhia, M. Sodium Hydroxide Hydrothermal Extraction of Lignin from Rice Straw Residue and Fermentation to Biomethane. Sustainability 2023, 15, 8755. https://doi.org/10.3390/su15118755
https://doi.org/10.3390/su15118755

[40] Shukla, A.; Kumar, D.; Girdhar, M.; Kumar, A.; Goyal, A.; Malik, T.; Mohan, A. Strategies of Pretreatment of Feedstocks for Optimized Bioethanol Production: Distinct and Integrated Approaches. Biotechnol. biofuels Bioprod. 2023, 16, 44. https://doi.org/10.1186/s13068-023-02295-2
https://doi.org/10.1186/s13068-023-02295-2

[41] Yang, S.; Zhang, Y.; Yue, W.; Wang, W.; Wang, Y.; Yuan, T.; Sun, R. Valorization of Lignin and Cellulose in Acid-Steam-Exploded Corn Stover by a Moderate Alkaline Ethanol Post-Treatment Based on an Integrated Biorefinery Concept. Biotechnol. Biofuels 2016, 9, 238. https://doi.org/10.1186/s13068-016-0656-1
https://doi.org/10.1186/s13068-016-0656-1

[42] Álvarez, C.; Duque, A.; Sánchez-Monedero, A.; González, E.J.; González-Miquel, M.; Cañadas, R. Exploring Recent Advances in Lignocellulosic Biomass Waste Delignification Through the Combined Use of Eutectic Solvents and Intensification Techniques. Processes 2024, 12, 2514. https://doi.org/10.3390/pr12112514
https://doi.org/10.3390/pr12112514

[43] Mikulski, D.; Kłosowski, G. Delignification Efficiency of Various Types of Biomass Using Microwave-Assisted Hydrotropic Pretreatment. Sci. Rep. 2022, 12, 4561. https://doi.org/10.1038/s41598-022-08717-9
https://doi.org/10.1038/s41598-022-08717-9

[44] Fechter, C.; Fischer, S.; Reimann, F.; Brelid, H.; Heinze, T. Influence of Pulp Characteristics on the Properties of Alkali Cellulose. Cellulose 2020, 27, 7227-7241. https://doi.org/10.1007/s10570-020-03151-4
https://doi.org/10.1007/s10570-020-03151-4

[45] Gomes, C.L.; Gonçalves, E.; Suarez, C.A.G.; Rodrigues, D.S.; Montano, I.C. Effect of Reaction Time and Sodium Hydroxide Concentration on Delignification and Enzymatic Hydrolysis of Brewer's Spent Grain from Two Brazilian Brewers. Cellul. Chem. Technol. 2021, 55, 101-112. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.10
https://doi.org/10.35812/CelluloseChemTechnol.2021.55.10

[46] Zhang, Y.; Wu, J.-Q.; Li, H.; Yuan, T.-Q.; Wang, Y.-Y.; Sun, R.-C. Heat Treatment of Industrial Alkaline Lignin and its Potential Application as an Adhesive for Green Wood-Lignin Composites. ACS Sustain. Chem. Eng. 2017, 5, 7269-7277. https://doi.org/10.1021/acssuschemeng.7b01485
https://doi.org/10.1021/acssuschemeng.7b01485

[47] Widsten, P.; Murton, K.; Bowers, T. Bridson, J. Thumm, A.; Hill, S.; Tutt, K.; West, M.; Weinberg, G.; Burbin, G. Pilot-Scale Production of Hemicellulose Ethers from Softwood Hemicelluloses Obtained from Compression Screw Pressate of a Thermo-Mechanical Pulping Plant. Polymers 2023, 15, 2376. https://doi.org/10.3390/polym15102376
https://doi.org/10.3390/polym15102376

[48] Mukbaniani, O.; Tatrishvili, T.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807-819. https://doi.org/10.23939/chcht17.04.807
https://doi.org/10.23939/chcht17.04.807

[49] Shimizu, S.; Yokoyama, T.; Matsumoto, Y. Effect of Type of Aromatic Nucleus in Lignin on the Rate of the β-O-4 Bond Cleavage During Alkaline Pulping Process. J. Wood Sci. 2015, 61, 529-536. https://doi.org/10.1007/s10086-015-1488-5
https://doi.org/10.1007/s10086-015-1488-5