Досягнення в селективному окисненні органічних сульфідів пероксидом водню на титанових каталізаторах
Attachment | Size |
---|---|
![]() | 848.52 KB |
[1] Goyal, R.; Singh, O.; Agrawal, A.; Samanta, Ch.; Sarkar, B. Advantages and Limitations of Catalytic Oxidation with Hydrogen Peroxide: From Bulk Chemicals to Lab Scale Process. Catal. Rev. 2022, 64, 229–285. https://doi.org/10.1080/01614940.2020.1796190
[2] Oyama, S.T.; Hightower, J.W. Catalytic Selective Oxidation. ACS Symp. Series 1993, 523. xiii–xiv. https://doi.org/10.1021/bk-1993-0523.pr001
[3] Anastas, P.T.; Warner, J.C. Principles of Green Chemistry, In Green Chemistry: Theory and Practice; Oxford University Press, 1998; pp 29–56.
[4] Thénard, L.J. Observations sur des nouvelles combinaisons entre l’oxigène et divers acides. Annales de chimie et de physique, 2nd series 1818, 8, 306–312.
[5] Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L.G. Hydrogen Peroxide Synthesis: An Outlookbeyond the Anthraquinone Process. Angew. Chem. Int. Ed. 2006, 45, 6962–6984. https://doi.org/10.1002/anie.200503779
[6] Goor, G.; Glenneberg, J.; Jacobi, S. Hydrogen Peroxide Ullmann’s Encyclopedia of Industrial Chemistry; Wiley– VCH Verlag GmbH & Co. KGaA, 2002.
[7] Jia, X.; Sun, F.; Fei, Y.; Jin, M.; Zhang, F.; Xu, W.; Shi, N.; Lv, X. Explosion Characteristics of Mixtures Containing Hydrogen Peroxide and Working Solution in the Anthraquinone Route to Hydrogen Peroxide. PSEP 2018, 119, 218–222. https://doi.org/10.1016/j.psep.2018.08.007
[8] https://thundersaidenergy.com/downloads/hydrogen-peroxide-production-costs/ (accesses 2024-10-15).
[9] Ren, M.-G.; Mao, M.; Duan, X.-Y.; Song, Q.H. Hydrogen Peroxide Synthesis by Direct Photoreduction of 2-Ethylanthraquinone in Aerated Solutions. J. Photochem. Photobiol. A: Chem. 2011, 217, 164–168. https://doi.org/10.1016/j.jphotochem.2010.10.004
[10] Qu, S.; Wu, H.; Ng, Y.H. Clean Production of Hydrogen Peroxide: A Heterogeneous Solar-Driven Redox Process. Adv. Energy Mater. 2023, 13, 2301047. https://doi.org/10.1002/aenm.202301047
[11] Kopacz, W.; Okninski, A.; Kasztankiewicz, A.; Nowakowski, P.; Rarata, G.; Maksimowski. P. Hydrogen Peroxide – A Promising Oxidizer for Rocket Propulsion and its Application in Solid Rocket Propellants. FirePhysChem 2022, 2, 56–66. https://doi.org/10.1016/j.fpc.2022.03.009
[12] Cavani, F.; Teles, J. H. Sustainability in Catalytic Oxidation: An Alternative Approach or a Structural Evolution? ChemSusChem 2009, 2, 508–534. https://doi.org/10.1002/cssc.200900020
[13] Zhang, S.; Wang, X.; Li, Q.; Yang, J. Oxidative Desulfurization of Dibenzothiophene over V-Mo co-Doped Akageneite. J. Environ. Chem. Eng. 2024, 12, 114267. https://doi.org/10.1016/j.jece.2024.114267
[14] Golchoubian, H.; Hosseinpoor, F. Effective Oxidation of Sulfides to Sulfoxides with Hydrogen Peroxide under Transition-Metal-Free Conditions. Molecules 2007, 12, 304–311. https://doi.org/10.3390/12030304
[15] Lai, S.K.C.; Lam, K.; Chu, K.M.; Wong, B.C.; Hui, W.M.; Hu W.H.; Lau, G.K.; Wong, W.M.; Yuen, M.F.; Chan, A.O.; et al. Lansoprazole for the Prevention of Recurrences of Ulcer Complications from Long-Term Low-Dose Aspirin Use. New Engl. J. Med. 2002, 346, 2033–2038. https://doi.org/10.1056/NEJMoa012877
[16] Sovova, M.; Sova, P. Pharmaceutical Significance of Allium sativum L. Antifungal Effects. Ceska Slov. Farm. 2003, 52, 82–87.
[17] Kotelanski, B.; Grozmann, R.J.; Cohn, J.N.C. Positive Inotropic Effect of Oral Esproquin in Normal Subjects. Pharmacol. Ther. 1973, 14, 427–433. https://doi.org/10.1002/cpt1973143427
[18] Schmied, R.; Wang, G.X.; Korth, M. Intracellular Na+ Activity and Positive Inotropic Effect of Sulmazole in Guinea Pig Ventricular Myocardium. Comparison with a Cardioactive Steroid. Circ. Res. 1991, 68, 597–604. https://doi.org/10.1161/01.RES.68.2.597
[19] Nieves, A.V.; Lang, A.E. Treatment of Excessive Daytime Sleepiness in Patient with Parkinson’s Disease with Modafinil. Clin. Neuropharmacol. 2002, 25, 111–114. https://doi.org/10.1097/00002826-200203000-00010
[20] Padmanabhan, S.; Lavin, R.C.; Durant, G.J. Asymmetric Synthesis of a Neuroprotective and Orally Active N-Methyl-D-aspartate Receptor Ion-Channel Blocker, CNS 5788. Tetrahedron: Asymmetr. 2000, 11, 3455–3645. https://doi.org/10.1016/S0957-4166(00)00328-1
[21] Chakrabarty, S.; Upadhyay, P.; Chakma, S. Experimental and Theoretical Study of Deep Oxidative Desulfurization of Dibenzothiophene Using Oxalate-Based Catalyst. Ultrason. Sonochem. 2021, 75, 105580. https://doi.org/10.1016/j.ultsonch.2021.105580
[22] Radko, M.; Kowalczyk, A.; Bidzińska, E.; Witkowski, S.; Górecka, S.; Wierzbicki, D.; Pamin, K.; Chmielarz, L. Titanium Dioxide Doped with Vanadium as Effective Catalyst for Selective Oxidation of Diphenyl Sulfide to Diphenyl Sulfonate. J. Therm. Anal. Calorim. 2018, 132, 1471–1480. https://doi.org/10.1007/s10973-018-7119-9
[23] Skolia, E.: Gkizis, P.L.; Nikitas, N.F.; Kokotos, Ch.G. Photochemical Aerobic Oxidation of Sulfides to Sulfoxides: The Crucial Role of Wavelength irradiation. Green Chem. 2022, 24, 4108–4118. https://doi.org/10.1039/d2gc00799a
[24] Kokare, A.M.; Sutar, R.S.; Deshmukh, S.G.; Xing, R.; Liu, S.; Latthe, S.S. ODS – Modified TiO2 Nanoparticles for the Preparation of Self-Cleaning Superhydrophobic Coating. AIP Conf. Proc. 2018, 1953, 100068. https://doi.org/10.1063/1.5033004
[25] Yang, G.; Han, J.; Liu, Y.; Qiu, Z.; Chen, X. The Synthetic Strategies of Hierarchical TS-1 Zeolites for the Oxidative Desulfurization Reactions. Chinese J. Chem. Eng. 2020, 28, 2227–2234. https://doi.org/10.1016/j.cjche.2020.06.026
[26] Rivoira, L.P.; Vallés, V.A.; Ledesma, B.C.; Ponte, M.V.; Martínez, M.L.; Anunziata, O.A.; Beltramone, A.R. Sulfur Elimination by Oxidative Desulfurization with Titanium-Modified SBA-16. Catal. Today 2016, 271, 102–113. https://doi.org/10.1016/j.cattod.2015.07.055
[27] Ali, S.H.; Mohammed, S.S.; Al-Dokheily, M.E.; Algharagholy, L. Photocatalytic Activity of Defective TiO2-x for Water Treatment/Methyl Orange Dye Degradation. Chem. Chem. Technol. 2022, 16, 639–651. https://doi.org/10.23939/chcht16.04.639
[28] Radko, M.; Kowalczyk, A.; Mikrut, P.; Witkowski, S.; Mozgawa, W.; Macyk, W.; Chmielarz, L. Catalytic and Photocatalytic Oxidation of Diphenyl Sulfide to Diphenyl Sulfoxide over Titanium Dioxide Doped with Vanadium, Zinc, and Tin. RSC Adv. 2020, 10, 4023-4031. https://doi.org/10.1039/C9RA09903D
[29] Mikrut, P.; Święs, A.; Kobielusz, M.; Chmielarz, L.; Macyk, W. Selective and Efficient Catalytic and Photocatalytic Oxidation of Diphenyl Sulfide to Sulfoxide and Sulfone: The Role of Hydrogen Peroxide and TiO2 Polymorph. RSC Adv. 2022, 12, 1862–1870. https://doi.org/10.1039/d1ra08364c
[30] Ramos-Luna, M.A.; Cedeño-Caero, L. Effect of Sulfates and Reduced-Vanadium Species on Oxidative Desulfurization (ODS) with V2O5/TiO2. Catal. Ind. Eng. Chem. Res. 2011, 50, 2641–2649. https://doi.org/10.1021/ie1006728
[31] Al-Maksoud, W.; Daniele, S.; Sorokin, A.B. Practical Oxidation of Sulfides to Sulfones by H2O2 Catalysed by Titanium Catalyst. Green Chem. 2008, 10, 447–451. https://doi.org/10.1039/B717696A
[32] Frank, W.C. Surprising Stereoselectivity in the Payne Epoxidation of Terpinen-4-ol with Acetonitrile/Hydrogen Peroxide. Tetrahedron: Asymmetry 1998, 9, 3745. https://doi.org/10.1016/S0957-4166(98)00407-8
[33] Pillai, U.R.; Sahle-Demessie, E. Sn-Exchanged Hydrotalcites as Catalysts for Clean and Selective Baeyer–Villiger Oxidation of Ketones Using Hydrogen Peroxide. J. Mol. Catal. A: Chem. 2003, 191, 93–100. https://doi.org/10.1016/S1381-1169(02)00347-3
[34] Payne, G.B.; Deming, P.H.; Williams, P.H. Reactions of Hydrogen Peroxide. VII. Alkali-Catalyzed Epoxidation and Oxidation Using a Nitrile as co-Reactant. J. Org. Chem. 1961, 26, 659–663.
[35] Robinson, D.J.; Davies, L.; McGuire, N.; Lee, D.F.; McMorn, P.; Willock, D.J.; Watson, G.W.; Bulman Page, P.C.; Bethell, D.; Hutchings, G.J. Oxidation of Thioethers and Sulfoxides with Hydrogen Peroxide Using TS-1 as Catalyst. Phys. Chem. Chem. Phys. 2000, 2, 1523–1529. https://doi.org/10.1039/A907605K
[36] Radko, M.; Rutkowska, M.; Kowalczyk, A.; Mikrut, P.; Díaz, U.; Palomares, A.E.; Macyk, W.; Chmielarz, L. Catalytic Oxidation of Organic Sulfides by H2O2 in the Presence of Titanosilicate Zeolites. Micropor. Mesopor. Mater. 2020, 302, 110219. https://doi.org/10.1016/j.micromeso.2020.110219
[37] Martausová, I.; Spustová, D.; Cvejn, D.; Martaus, A.; Lacný, Z.; Přech, J. Catalytic activity of Advanced Titanosilicate Zeolites in Hydrogen Peroxide S-Oxidation of Methyl(phenyl)sulfide. Catal. Today 2019, 324, 144–153. https://doi.org/10.1016/j.cattod.2018.07.003
[38] Přech, J.; Morris, R.E.; Čejka, J. Selective Oxidation of Bulky Organic Sulfides over Layered Titanosilicate Catalysts. Catal. Sci. Technol. 2016, 6, 2775. https://doi.org/10.1039/c5cy02083b
[39] Dubiel, W.; Kobielusz, M.; Mróz, K.; Mazur, M.; Ang, L.; Chmielarz, L.; Macyk, W.; Roth, W.J.; Čejka, J.; Gil, B. House-of-Cards Composites of MWW Monolayers and TiO2 Nanoparticles with (Photo)catalytic Activity. Appl. Mater. Today 2024, 41, 102473. https://doi.org/10.1016/j.apmt.2024.102473
[40] Dubiel, W.; Kowalczyk, A.; Jankowska, A.; Michalik, M.; Mozgawa, W.; Kobielusz, M.; Macyk, W.; Chmielarz, L. Silica-Titania Mesoporous Silicas of MCM-41 Type as Effective Catalysts and Photocatalysts for Selective Oxidation of Diphenyl Sulfide by H2O2. Green Proc. Synt. 2023, 12, 20230052. https://doi.org/10.1515/gps-2023-0052
[41] Juan, Z.; Dishun, Z.; Liyan, Y.; Yongbo, L. Photocatalytic Oxidation Dibenzothiophene Using TS-1. Chem. Eng. J. 2010, 156, 528–531. https://doi.org/10.1016/j.cej.2009.04.032
[42] Lee, G.D.; Jung, S.K.; Jeong, Y.J.; Park, J.H.; Lim, K.T.; Ahn B.H.; Hong, S.S. Photocatalytic Decomposition of 4-Nitrophenol over Titanium Silicalite (TS-1) Catalysts. Appl. Catal. A-Gen. 2003, 239, 197–208. https://doi.org/10.1016/S0926-860X(02)00389-7
[43] Howe, R.F.; Krisnandi, Y.K. Photoreactivity of ETS-10. Chem. Commun. 2001, 1588–1589. https://doi.org/10.1039/B104870H
[44] Usseglio, S.; Calza, P; Damin, A.; Minero, C.; Bordiga, S.; Lamberti, C. Tailoring the Selectivity of Ti-Based Photocatalysts (TiO2 and Microporous ETS-10 and ETS-4) by Playing with Surface Morphology and Electronic Structure. Chem. Mater. 2006, 18, 3412–3424. https://doi.org/10.1021/cm052841g
[45] Yan, Y.; Li, C.; Wu, Y.; Gao, J.; Zhang Q. From Isolated Ti-oxo Clusters to Infinite Ti-oxo Chains and Sheets: Recent Advances in Photoactive Ti-Based MOFs. J. Mater. Chem. A. 2020, 8, 15245–15270. https://doi.org/10.1039/D0TA03749D
[46] Huang, F.; Hao, H.; Sheng, W.; Dong, X.; Lang, X. Cooperative Photocatalysis of Dye–Ti-MCM-41 with Trimethylamine for Selective Aerobic Oxidation of Sulfides Illuminated by Blue Light. J. Colloid. Interface. Sci. 2023, 630, 921–930. https://doi.org/10.1016/j.jcis.2022.10.052
[47] Dubiel, W.; Tran, L.B.; Jankowska, A.; Kowalczyk, A.; Michalik, M.; Mozgawa, W.; Mazur, M; Nguyen, N.H.; Chmielarz, L. Synergistic Catalytic Effect of Titanium and Iron Incorporated to Spherical MCM-41 in Selective Catalytic Oxidation of Diphenyl Sulfide with H2O2. Polyhedron 2024, 262, 117158. https://doi.org/10.1016/j.poly.2024.117158
[48] Kim, H.H.; Lee, H.; Lee, D.; Ko, Y.J.; Woo, H.; Lee, J.; Lee, Ch.; Le-Tuan Pham, A. Activation of Hydrogen Peroxide by a Titanium Oxide-Supported Iron Catalyst: Evidence for Surface Fe(IV) and its Selectivity. Environ. Sci. Technol. 2020, 54, 15424–15432. https://doi.org/10.1021/acs.est.0c04262
[49] Chervinskyy, T.; Grynyshyn, O.; Prokop, R.; Korchak, B. Study on the Purification Process of Used Motor Oils in the Presence of Crystalline Urea. Chem. Chem. Technol. 2023, 17, 460–468. https://doi.org/10.23939/chcht17.02.460
[50] Yarmola, T.; Topilnytskyy, P.; Romanchuk, V. High-viscosity Crude Oil. A Review. Chem. Chem. Technol. 2023, 17, 195–202. https://doi.org/10.23939/chcht17.01.195
[51] Cao, Y.; Wang, H.; Ding, R.; Wang. L.; Liu, Z.; Lv, B. Highly Efficient Oxidative Desulfurization of Dibenzothiophene Using Ni Modified MoO3 Catalyst. Appl. Catal. A-Gen. 2020, 589, 117308. https://doi.org/10.1016/j.apcata.2019.117308
[52] Zhu, J.; Wu, P.; Chen, L.; He, J.; Wu, Y.; Wang, C.; Chao, Y; Lu, L.; He, M.; Zhu, W. 3D-Printing of Integrated Spheres as a Superior Support of Phosphotungstic Acid for Deep Oxidative Desulfurization of Fuel. J. Energy. Chem. 2020, 45, 91–97. https://doi.org/10.1016/j.jechem.2019.10.001
[53] Haghighi, H.; Gooneh-Farahani, S. Insights to the Oxidative Desulfurization Process of Fossil Fuels over Organic and Inorganic Heterogeneous Catalysts: Advantages and Issues. Environ. Sci. Pollution Res. 2020, 27, 39923–39945. https://doi.org/10.1007/s11356-020-10310-4
[54] Abdullah, W.N.W.; Bakar, W.A.W.A.; Ali, R.; Mokhtar, W.N.A.W.; Omar, M.F. Catalytic Oxidative Desulfurization Technology of Supported Ceria Based Catalyst: Physicochemical and Mechanistic Studies. J. Clean Prod. 2017, 162, 1455–1464. https://doi.org/10.1016/j.jclepro.2017.06.084
[55] Ribeiro, S.O.; Nogueira, L.S.; Gago, S.; Almeida, P.L.; Corvo, M.C.; De Castro, B.; Granadeiro, C.M.; Balula, S.S. Desulfurization Process Conciliating Heterogeneous Oxidation and Liquid Extraction: Organic Solvent or Centrifugation/Water? Appl. Catal. A-Gen. 2017, 542, 359–367. https://doi.org/10.1016/j.apcata.2017.05.032
[56] Javadli, R.; Klerk, A. Desulfurization of Heavy Oil. Appl. Petrochem. Res. 2012, 1, 3-19. https://doi.org/10.1007/s13203-012-0006-6
[57] Rajendran, A.; Cui, T.; Fan, H.; Yang, Z.; Feng, J.; Li, W. A Comprehensive Review on Oxidative Desulfurization Catalysts Targeting Clean Energy and Environment. J. Mater. Chem. A 2020, 8, 2246–2285. https://doi.org/10.1039/c9ta12555h
[58] Bian, H.; Zhang, H.; Li, D.; Duan, Z.; Zhang, H.; Zhang, S.; Xu., B. Insight into the Oxidative Desulfurization Mechanism of Aromatic Sulfur Compounds over Ti-MWW Zeolite: A Computational Study. Micropor. Mesopor. Mater. 2019, 294, 109837. https://doi.org/10.1016/j.micromeso.2019.109837
[59] Wei, Y.; Wu. P.; Luo, J.; Dai, L.; Li, H.; Zhang, M.; Chen, L.; Wang, L.; Zhu, W.; Li, H. Synthesis of Hierarchical Porous BCN Using Ternary Deep Eutectic Solvent as Precursor and Template for Aerobic Oxidative Desulfurization. Micropor. Mesopor. Mater. 2019, 293, 109788. https://doi.org/10.1016/j.micromeso.2019.109788
[60] Sun, L.; Zhu, Z.; Su, T.; Liao, W.; Hao, D.; Chen, Y.; Zhao, Y.; Ren, W.; Ge, H.; Lü, H. Novel Acidic Eutectic Mixture as Peroxidase Mimetics for Oxidative Desulfurization of Model Diesel. Appl. Catal. B-Environ. 2019, 255, 117747. https://doi.org/10.1016/j.apcatb.2019.117747
[61] Baradaran, S.; Sadeghi, M.T. Intensification of Diesel Oxidative Desulfurization via Hydrodynamic Cavitation. Ultrason. Sonochem. 2019, 58, 104698. https://doi.org/10.1016/j.ultsonch.2019.104698
[62] Niu, Y.; Xu, Q.; Wang, Y.; Li, Z.; Lu, J.; Ma, P.; Zhang, Ch.; Niu, J.; Wang, J. Preparation, Characterization, and Catalytic Performances of a Pyrazine Dicarboxylate-Bridging Rare-Earth-Containing Polytungstoarsenate Aggregate for Selective Oxidation of Thiophenes and Deep Desulfurization of Model Fuels. Dalton Trans. 2018, 47, 9677–9684. https://doi.org/10.1039/C8DT01243A
[63] Zuo, M.; Huang, X.; Li, J.; Chang, Q.; Duan, Y.; Yan, L.; Xiao, Z.; Mei, S.; Lu, S.; Yao, Y. Oxidative Desulfurization in Diesel via a Titanium Dioxide Triggered Thermocatalytic Mechanism. Catal. Sci. Technol. 2019, 9, 2923–2930. https://doi.org/10.1039/c9cy00298g
[64] Chen, Q.; Du, G.H.; Zhang, S.; Peng, L.M. The Structure of Trititanate Nanotubes. Acta Cryst. 2002, B58, 587–593. https://doi.org/10.1107/S0108768102009084
[65] Qiu, J.; Wang, G.; Zhang, Y.; Zeng, D.; Chen, Y. Direct Synthesis of Mesoporous H3PMo12O40/SiO2 and its Catalytic Performance in Oxidative Desulfurization of Fuel Oil. Fuel 2015, 147, 195–202. https://doi.org/10.1016/j.fuel.2015.01.064
[66] Zhu, W.S.; Xu, Y.H.; Li, H.M.; Dai, B.L.; Xu, H.; Wang, C.; Chao, Y.H.; Liu, H. Photocatalytic Oxidative Desulfurization of Dibenzothiophene Catalyzed by Amorphous TiO2 in Ionic Liquid. Korean J. Chem. Eng. 2014, 31, 211–217. https://doi.org/10.1007/s11814-013-0224-3
[67] Wang, C.; Ao, Y.H.; Wang, P.F.; Hou, J.; Qian, J. A Facile Method for the Preparation of Titania-Coated Magnetic Porous Silica and its Photocatalytic Activity under UV or Visible Light. Colloids Surf. A 2010, 360, 184–189. https://doi.org/10.1016/j.colsurfa.2010.02.030
[68] Vu, T.H.T.; Nguyen, T.T.T.; Nguyen, P.H.T.; Do, M.H.; Au, H.T.; Nguyen, T.B.; Nguyen, D. L.; Park, J.S. Fabrication of Photocatalytic Composite of Multi-Walled Carbon Nanotubes/TiO2 and its Application for Desulfurization of Diesel. Mater. Res. Bull. 2012, 47, 308–314. https://doi.org/10.1016/j.materresbull.2011.11.016
[69] Salmasi, M.; Fatemi, S.; Mortazavi, Y. Fabrication of Promoted TiO2 Nanotubes with Superior Catalytic Activity against TiO2 Nanoparticles as the Catalyst of Oxi-Desulfurization Process. J. Ind. Eng. Chem. 2016, 39, 66–76. https://doi.org/10.1016/j.jiec.2016.05.011
[70] Shen, C.; Wang, Y. J.; Xu, J.H.; Luo, G.S. Oxidative Desulfurization of DBT with H2O2 Catalysed by TiO2/Porous Glass. Green Chem. 2016, 18, 771–781. https://doi.org/10.1039/C5GC01653C
[71] Sun, Y.W.; Wang, Y.J.; Lu, Y.C. Wang, T.; Luo, G.S. Subcritical Water Treatment: A Simple Method to Prepare Porous Glass with a Core–Shell Structure. J. Am. Ceram. Soc. 2008, 91, 103–109. https://doi.org/10.1111/j.1551-2916.2007.02111.x
[72] Shen, C.; Wang, Y.J.; Xu, J.H.; Lu, Y.C.; Luo, G.S. Preparation and Ion Exchange Properties of Egg-Shell Glass Beads with Different Surface Morphologies. Particuology 2012, 10, 317–326. https://doi.org/10.1016/j.partic.2011.11.002
[73] Shen, C.; Wang, Y.J.; Xu, J.H.; Lu, Y.C.; Luo, G.S. Porous Glass Beads as a New Adsorbent to Remove Sulfur-Containing Compounds. Green Chem. 2012, 14, 1009–1015. https://doi.org/10.1039/C2GC16559G
[74] Prech, J. Catalytic Performance of Advanced Titanosilicate Selective Oxidation Catalysts – A Review. Catal. Rev.: Sci. Eng. 2018, 60, 71. https://doi.org/10.1080/01614940.2017.1389111
[75] Du, Q.; Guo, Y.; Wu, P.; Liu, H. Synthesis of Hierarchically Porous TS-1 Zeolite with Excellent Deep Desulfurization Performance under Mild Conditions. Micropor. Mesopor. Mater. 2018, 264, 272–280. https://doi.org/10.1016/j.micromeso.2018.01.015
[76] Shi, C.; Wang, W.; Liu, N.; Xu, X.; Wang, D.; Zhang, M.; Sun, P.; Chen, T. Low Temperature Oxidative Desulfurization with Hierarchically Mesoporous Titaniumsilicate Ti-SBA-2 Single Crystals. Chem. Commun. 2015, 51, 11500-11503. https://doi.org/10.1039/C5CC04014K
[77] Lv, G.; Deng, S.; Zhai, Y.; Zhu, Y.; Li, H.; Wang, F.; Zhang, X. P123 Lamellar Micelle-Assisted Construction of Hierarchical TS-1 Stacked Nanoplates with Constrained Mesopores for Enhanced Oxidative Desulfurization. Appl. Catal. A-Gen. 2018, 567, 28–35. https://doi.org/10.1016/j.apcata.2018.09.009
[78] Du, S.; Sun, Q.; Wang, N.; Chen, X.; Jia, M.; Yu, J. Synthesis of Hierarchical TS-1 Zeolites with Abundant and Uniform Intracrystalline Mesopores and their Highly Efficient Catalytic Performance for Oxidation Desulfurization. J. Mater. Chem. A 2017, 5, 7992–7998. https://doi.org/10.1039/C6TA10044A
[79] Savić, S.M.; Vojisavljević, K.; Počuča-Nešić, M.; Živojević, K.; Mladenović, M.; Knežević, N.Ž. Hard Template Synthesis of Nanomaterials Based on Mesoporous Silica. Metall. Mater. Eng. 2018, 24, 225–241. https://doi.org/10.30544/400
[80] Fang, Y.; Hu, H.; Mesoporous TS-1: Nanocasting Synthesis with CMK-3 as Template and its Performance in Catalytic Oxidation of Aromatic Thiophene. Catal. Commun. 2007, 8, 817–820, https://doi.org/10.1016/j.catcom.2006.09.018
[81] Bai, R.; Sun, Q.; Song, Y.; Wang, N.; Zhang, T.; Wang, F.; Zou, Y.; Feng, Z.; Miao, S.; Yu, J. Intermediate-Crystallization Promoted Catalytic Activity of Titanosilicate Zeolites. J. Mater. Chem. A 2018, 6, 8757–8762. https://doi.org/10.1039/c8ta01960f
[82] Du, S.; Chen, X.; Sun, Q.; Wang, N.; Jia, M.; Valtchev, V.; Yu, J. A Non-Chemically Selective Top-Down Approach Towards the Preparation of Hierarchical TS-1 Zeolites with Improved Oxidative Desulfurization Catalytic Performance. Chem. Commun. 2016, 52, 3580–3583. https://doi.org/10.1039/c5cc10232d
[83] Gao, G.; Cheng, S.; An, Y.; Si, X.; Fu, X.; Liu, Y.; Zhang, H.; Wu, P.; He, M-Y. Oxidative Desulfurization of Aromatic Sulfur Compounds over Titanosilicates. ChemCatChem 2010, 2, 459–466. https://doi.org/10.1002/cctc.200900073
[84] Si, X.; Cheng, S.; Lu, Y.; Gao, G.; He, M-Y. Oxidative Desulfurization of Model Oil over Au/Ti-MWW. Catal. Lett. 2008, 122, 321–324. https://doi.org/10.1007/s10562-007-9380-6
[85] Nurwita, A.; Trejda, M. The Effect of Mesoporous Structure of the Support on the Oxidation of Dibenzothiophene. Int. J. Mol. Sci. 2023, 24, 16957. https://doi.org/10.3390/ijms242316957
[86] Ren, X.; Miao, G.; Xiao, Z.; Ye, F.; Li, Z.; Wang, H.; Xiao, J. Catalytic Adsorptive Desulfurization of Model Diesel Fuel Using TiO2/SBA-15 under Mild Conditions. Fuel 2016, 174, 118–125. https://doi.org/10.1016/j.fuel.2016.01.093
[87] Crucianelli, M.; Bizzarri, B.M.; Saladino, R. SBA-15 Anchored Metal Containing Catalysts in the Oxidative Desulfurization Process. Catalysts 2019, 9, 984. https://doi.org/10.3390/catal9120984
[88] Chica, A.; Corma, A.; Domine, ME. Catalytic Oxidative Desulfurization (ODS) of Diesel Fuel on a Continuous Fixed-Bed Reactor. J. Catal. 2006, 242, 299–308. https://doi.org/10.1016/j.jcat.2006.06.013
[89] Farghadani, M.H.; Mahdavi, V. Novel Synthesis of Highly Dispersed Molybdenum Oxide over Nanorods Cryptomelane Octahedral Manganese Oxide Molecular Sieve (MoOx/Nanorod-OMS-2) as a High Performance Catalyst for Oxidative Desulfurization Process. Fuel Proc. Technol. 2022, 236, 107415. https://doi.org/10.1016/j.fuproc.2022.107415
[90] Liu, L.; Zhang, Y.; Tan, W. Ultrasound-Assisted Oxidation of Dibenzothiophene with Phosphotungstic Acid Supported on Activated Carbon. Ultrason. Sonochem. 2024, 21, 970–974. https://doi.org/10.1016/j.ultsonch.2013.10.028
[91] Kompanijec, V.; Repa, G.M.; Fredin, L.A.; Swierk, J.R. Controlling Product Selectivity in Oxidative Desulfurization Using an Electrodeposited Iron Oxide Film. Dalton Trans. 2023, 52, 9646–9654. https://doi.org/10.1039/D3DT01074K