Testing the Effectiveness of Growth Factors in Dermal Applications

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Wojciech Karwowski1, Damian Dudek2, Ewa Kłodzińska3,4
Affiliation: 
1 St. Lazarus Foundation, 21-300, 4 Pocztowa St., Radzyń Podlaski, Poland 2 Department of Perioperative Dentistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067, 13-15 Jagiellońska St., Bydgoszcz, Poland 3 Institute of Innovative Medicine, Longevity Clinic, 30-701, 25/4 Zablocie St., Krakow, Poland 4 EK Bio-Med, 87-100, 26/403 Szosa Chelminska Str., Torun, Poland klodzinskaewa473@gmail.com
DOI: 
https://doi.org/10.23939/chcht19.04.783
AttachmentSize
PDF icon full_text.pdf658.44 KB
Abstract: 
This study evaluates the electrophoretic behaviour and zeta potential of fullerenes in various buffer systems, hydrogel matrices, and in combination with insulin-like growth factor-1 (IGF-1) to optimise their potential for dermal applications. The methodology involved capillary electrophoresis (CE) and zeta potential measurements to assess fullerene stability in buffer solutions with pH values of 2.5, 7, and 9.3, as well as in a hydrogel base and in combination with IGF-1. Samples were analysed at 48 and 73 hours after preparation, and electrophoretic mobility and zeta potential were measured. Pronounced aggregation and irregular migration in aqueous and buffer solutions were demonstrated under acidic and alkaline conditions. Neutral conditions provided moderate stabilization but remained insufficient to ensure long-term colloidal stability. Incorporation of fullerenes into a hydrogel matrix significantly enhanced stability. The presence of IGF-1 in fullerene dispersions further improved electrophoretic profiles, suggesting a potential synergistic stabilizing effect.
References: 

[1] Jeong, W.Y.; Kwon, M.; Choi, H.E.; Kim, K.S. Recent Advances in Transdermal Drug Delivery Systems: A Review. Biomater. Res. 2021, 25, 24. https://doi.org/10.1186/s40824-021-00226-6
https://doi.org/10.1186/s40824-021-00226-6

[2] Ekpete, O.A.; Orie. K.J. Fullerenes: Synthesis and Application. FNAS J. Sci. Innov. 2023, 4, 221-236.

[3] Heflich, L.W. Carbon 60: Vision for the Future. Act. Sci. Nutr. Health. 2023, 7, 16-20. https://doi.org/10.31080/ASNH.2023.07.1307
https://doi.org/10.31080/ASNH.2023.07.1307

[4] Luby, Š. Nanoscience - From Manipulation of Atoms to Human Needs. Eur. Pharm. J. 2021, 68, 84-88. https://doi.org/10.2478/afpuc-2021-0005
https://doi.org/10.2478/afpuc-2021-0005

[5] Ghabdian, Y.; Taheri, A.; Jahanian-Najafabadi, A. Development of Novel Topical Formulation from Fullerene with Antibacterial Activity Against Propionibacterium acnes. Fuller. Nanotub. Carbon Nanostruct. 2020, 29, 163-173. https://doi.org/10.1080/1536383X.2020.1825388
https://doi.org/10.1080/1536383X.2020.1825388

[6] Kozlovs'ka, T.; Malovanyy, M.; Nykyforov, V.; Novokhatko, O.; Liuta, O.; Tymchuk, I.; Onipko. V. Possibility of Obtaining Hyaluronic Acid from Cyanobacteria. Chem. Chem. Technol. 2025, 19, 327-334. https://doi.org/10.23939/chcht19.02.327
https://doi.org/10.23939/chcht19.02.327

[7] Serda, M.; Szewczyk, G.; Krzysztyńska-Kuleta, O.; Korzuch, J.; Dulski, M.; Musioł, R.; Sarna, T. Developing [60] Fullerene Nanomaterials for Better Photodynamic Treatment of Non-Melanoma Skin Cancers. ACS Biomater. Sci. Eng. 2020, 6, 5930-5940. https://doi.org/10.1021/acsbiomaterials.0c00932
https://doi.org/10.1021/acsbiomaterials.0c00932

[8] Kyung, A.; Lee, Y.; Kwon, H. J. Proceedings of the 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, NY, Oct 10-12, 2019; Institute of Electrical and Electronics Engineers: New York, 2019; pp 862-866. https://doi.org/10.1109/UEMCON47517.2019.8993106
https://doi.org/10.1109/UEMCON47517.2019.8993106

[9] Kulkarni, S.; Chaudhari, S.B.; Chikkamath, S.S.; Kurale, R.S.; Thopate, T.S.; Praveenkumar, S.; Ghotekar, S.; Patil, P.; Kumar, D. Potential Applications of Fullerenes in Drug Delivery and Medical Advances. Inorg. Chem. Commun. 2025, 173, 113829. https://doi.org/10.1016/j.inoche.2024.113829
https://doi.org/10.1016/j.inoche.2024.113829

[10] Raszewska-Famielec, M.; Flieger, J. Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions - An Overview of Dermo-Cosmetic and Dermatological Products. Int. J. Mol. Sci. 2022, 23, 15980. https://doi.org/10.3390/ijms232415980
https://doi.org/10.3390/ijms232415980

[11] Garg, U.; Jain, K. Dermal and Transdermal Drug Delivery through Vesicles and Particles: Preparation and Applications. Adv. Pharm. Bull. 2022, 12, 45-57. https://doi.org/10.34172/apb.2022.006
https://doi.org/10.34172/apb.2022.006

[12] Kausar, A. Poly(methyl methacrylate)/Fullerene Nanocomposite - Factors and Applications. Polym.-Plast. Technol. Mater. 2021, 61, 593-608. https://doi.org/10.1080/25740881.2021.1995422
https://doi.org/10.1080/25740881.2021.1995422

[13] Romero Robles, L.; Antunes-Ricardo, M.; Vega-Cantú, Y. I.; Zarich Carrillo, V. V.; Ortiz-Buentello, S. T. Proceedings of the 22nd International Multi-Conference for Engineering, Education, and Technology: Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service of Education, Research, and Industry for a Society 5.0, Costa Rica, July 2024; Latin American and Caribbean Consortium of Engineering Institutions: Costa Rica, 2024; pp 1-9. https://doi.org/10.18687/LACCEI2024.1.1.324
https://doi.org/10.18687/LACCEI2024.1.1.324

[14] Francis Luther King, M.; Sherin Nithya, S. Applications of nanoparticles in the cosmetic field. In Sustainable Utilization of Nanoparticles and Nanofluids in Engineering Applications; Boopathi, S.; Davim, J., Eds.; Hershey, PA: IGI Global Scientific Publishing, 2023; pp. 102-129. https://doi.org/10.4018/978-1-6684-9135-5.ch005
https://doi.org/10.4018/978-1-6684-9135-5.ch005

[15] Biswas, R.; Batista Da Rocha, C.; Bennick, R.A.; Zhang, J. Water-Soluble Fullerene Monoderivatives for Biomedical Applications. ChemMedChem. 2023, 18, e202300296. https://doi.org/10.1002/cmdc.202300296
https://doi.org/10.1002/cmdc.202300296

[16] Mulqueen, N.; Sneed, K.; Pathak, Y. Recent Trends in Fullerenes Biomedical Applications. Nov. Res. Sci. 2022, 10, 000748.

[17] Mchedlov-Petrossyan, N.O.; Marfunin, M.O.; Kriklya, N.N. Colloid Chemistry of Fullerene Solutions: Aggregation and Coagulation. Liquids 2024, 4, 32-72. https://doi.org/10.20944/preprints202310.0808.v1
https://doi.org/10.20944/preprints202310.0808.v1

[18] Kyzyma, O.A. Liquid Systems with Fullerenes in Organic Solvents and Aqueous Media. Ukr. J. Phys. 2020, 65, 761. https://doi.org/10.15407/ujpe65.9.761
https://doi.org/10.15407/ujpe65.9.761

[19] Shinde, D.B.; Pawar, R.; Vitore, J.; Kulkarni, D.; Musale, S.; Giram, P.S. Natural and Synthetic Functional Materials for Broad Spectrum Applications in Antimicrobials, Antivirals and Cosmetics. Polym. Adv. Technol. 2021, 32, 4204-4222. https://doi.org/10.1002/pat.5457
https://doi.org/10.1002/pat.5457

[20] Dubey, S.K.; Dey, A.; Singhvi, G.; Pandey, M.M.; Singh, V.; Kesharwani, P. Emerging Trends of Nanotechnology in Advanced Cosmetics. Colloids Surf. B: Biointerfaces 2022, 214, 112440. https://doi.org/10.1016/j.colsurfb.2022.112440
https://doi.org/10.1016/j.colsurfb.2022.112440

[21] Zawadzka, O.; Gnatowski, P.; Piłat, E.; Kucińska-Lipka, J. Investigation on the Swelling Kinetics of Gelatin Based Hydrogels. Chem. Chem. Technol. 2025, 19, 259-269. https://doi.org/10.23939/chcht19.02.259
https://doi.org/10.23939/chcht19.02.259

[22] Guo, K.; Li, N.; Bao, L.; Lu, X. Fullerenes and Derivatives as Electrocatalysts: Promises and Challenges. Green Energy Environ. 2024, 9, 7-27. https://doi.org/10.1016/j.gee.2022.11.002
https://doi.org/10.1016/j.gee.2022.11.002

[23] Fernandes, N.B.; Shenoy, R.U.K.; Kajampady, M.K.; DCruz, C.E.M.; Shirodkar, R.K.; Kumar, L.; Verma, R. Fullerenes for the Treatment of Cancer: An Emerging Tool. Environ. Sci. Pollut. Res. 2022, 29, 58607-58627. https://doi.org/10.1007/s11356-022-21449-7
https://doi.org/10.1007/s11356-022-21449-7

[24] Hui, M.; Jia, X.; Li, X.; Lazcano-Silveira, R.; Shi, M. Anti-Inflammatory and Antioxidant Effects of Liposoluble C60 at the Cellular, Molecular, and Whole-Animal Levels. J. Inflamm. Res. 2023, 16, 83-93. https://doi.org/10.2147/JIR.S386381
https://doi.org/10.2147/JIR.S386381