Synthesis, Identification, and Evaluation of Antibacterial Activity of Some New 4,5-Dihydro-1H-Pyrazoles, Derivatives from Substituted Chalcones

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Jawdat Abdulwahid1, Saad Jasim2, Shakhawan Beebany2
Affiliation: 
1 Environmental and Pollution Engineering Department, Technical Engineering College, Kirkuk, Northern Technical University, Mosul, Iraq 2 Department of Chemistry, College of Sciences, University of Kirkuk, Kirkuk, Iraq sh.beebany@uokirkuk.edu.iq
DOI: 
https://doi.org/10.23939/chcht19.03.482
AttachmentSize
PDF icon full_text.pdf849.93 KB
Abstract: 
In this work, a series of new 4,5-dihydro-1H-pyrazole derivatives (M21-M25) has been synthesized successfully via the reaction of different aldehydes with ketones to produce chalcones, followed by the reaction with hydrazine and phenyl hydrazine. The prepared compounds were identified using FT-IR spectroscopy, 1H NMR spectroscopy, and 13C NMR spectroscopy. The biological activity of these prepared compounds was preliminarily evaluated against certain types of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli). The results showed a high antibacterial effect towards both types of bacteria at high concentrations.
References: 

[1] Kedar, M.; Shirbhate, M.; Chauhan, R.; Sharma, S.; Verma, A. Design Synthesis and Evaluation of Anticancer Pyrazole Derivatives of Chalcone Scaffold. Research Journal of Pharmacy and Technology 2020, 13, 342-346. https://doi.org/10.5958/0974-360X.2020.00069.4
https://doi.org/10.5958/0974-360X.2020.00069.4

[2] Schmidt, A.; Dreger, A. Recent Advances in the Chemistry of Pyrazoles. Properties, Biological Activities, and Syntheses. Currr. Org. Chem. 2011, 15, 1423-1463.
https://doi.org/10.2174/138527211795378263

[3] Secrieru, A.; O'Neill, P. M.; Cristiano, M. L. S. Revisiting the Structure and Chemistry of 3 (5)-Substituted Pyrazoles. Molecules 2019, 25, 42. https://doi.org/10.3390/molecules25010042
https://doi.org/10.3390/molecules25010042

[4] Pechmann H. von .Pyrazol aus Acetylen und Diazomethan. Ber. Dtsch. Chem. Ges. 1898, 31, 2950-2951. https://doi.org/10.1002/cber.18980310363
https://doi.org/10.1002/cber.18980310363

[5] Alam, M. A. Pyrazole: An Emerging Privileged Scaffold in Drug Discovery. Future Med. Chem. 2023, 15, 2011-2023. https://doi.org/10.4155/fmc-2023-0207
https://doi.org/10.4155/fmc-2023-0207

[6] Ameziane El Hassani, I.; Rouzi, K.; Assila, H.; Karrouchi, K.; Ansar, M. h. Recent advances in the synthesis of pyrazole derivatives: a review. Reactions 2023, 4, 478-504. https://doi.org/10.3390/reactions4030029
https://doi.org/10.3390/reactions4030029

[7] Hawaiz, F. E.; Samad, M. K. Synthesis and Spectroscopic Characterization of Some New Biological Active Azo-Pyrazoline Derivatives. J. Chem. 2012, 9, 1613-1622. https://doi.org/10.1155/2012/525940
https://doi.org/10.1155/2012/525940

[8] Nitulescu, G. M.; Stancov, G.; Seremet, O. C.; Nitulescu, G.; Mihai, D. P.; Duta-Bratu, C. G.; Barbuceanu, S. F.; Olaru, O. T. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023, 28, 5359. https://doi.org/10.3390/molecules28145359
https://doi.org/10.3390/molecules28145359

[9] Ansari, A.; Ali, A.; Asif, M. Biologically Active Pyrazole Derivatives. New J. Chem. 2017, 41, 16-41. https://doi.org/10.1039/C6NJ03181A
https://doi.org/10.1039/C6NJ03181A

[10] Karrouchi, K.; Mortada, S.; Issaoui, N.; El-guourrami, O.; Arshad, S.; Bouatia, M.; Sagaama, A.; Benzeid, H.; El Karbane, M.; Faouzi, M. E. A. Synthesis, Crystal Structure, Spectroscopic, Antidiabetic, Antioxidant and Computational Investigations of Ethyl 5-Hydroxy-1-isonicotinoyl-3-methyl-4, 5-dihydro-1H-pyrazole-5-carboxylate. J. Mol. Struct. 2022, 1251, 131977. https://doi.org/10.1016/j.molstruc.2021.131977
https://doi.org/10.1016/j.molstruc.2021.131977

[11] Ebenezer, O.; Shapi, M.; Tuszynski, J. A. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022, 10, 1124. https://doi.org/10.3390/biomedicines10051124
https://doi.org/10.3390/biomedicines10051124

[12] Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. h. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. https://doi.org/10.3390/molecules23010134
https://doi.org/10.3390/molecules23010134

[13] Bennani, F. E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Faouzi, M. E. A. Overview of Recent Developments of Pyrazole Derivatives as an Anticancer Agent in Different Cell Line. Bioorg. Chem. 2020, 97, 103470. https://doi.org/10.1016/j.bioorg.2019.103470
https://doi.org/10.1016/j.bioorg.2019.103470

[14] Lusardi, M.; Spallarossa, A.; Brullo, C. Amino-Pyrazoles in Medicinal Chemistry: A Review. Int. J. Mol. Sci. 2023, 24, 7834. https://doi.org/10.3390/ijms24097834
https://doi.org/10.3390/ijms24097834

[15] Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P. Pyrazolone Structural Motif in Medicinal Chemistry: Retrospect and Prospect. Eur. J. Med. Chem. 2020, 186, 111893. https://doi.org/10.1016/j.ejmech.2019.111893
https://doi.org/10.1016/j.ejmech.2019.111893

[16] Lai, P.-M.; Ha, S.-T. Synthesis of Heterocyclic Pyridine-Based Chalcones with Dimeric Structure. Chem. Chem. Technol. 2022, 16, 1-6. https://doi.org/10.23939/chcht16.01.001
https://doi.org/10.23939/chcht16.01.001

[17] Jasim, S. S.; Abdulwahid, J. H.; Beebany, S.; Mohammed, B. Synthesis, Identification, and Antibacterial Effect Assessment of Some New 1, 4-Thiazepines, Derived from Substituted Diphenyl Acrylamides and Diphenyl Dienones. Chem. Methodol. 2023, 7, 509-523. https://doi.org/10.22034/chemm.2023.392659.1668

[18] Beebany, S.; Jasim, S. S.; Al-Tufah, M. M.; Arslan, S. Preparation and Identification of New 1, 4-bis (5, 3-Substituted-2, 3-dihydro-1H-pyrazole-1-yl) buta-1, 4-dione Derivatives with their Antibacterial Effect Evaluation. Chem. Methodol. 2023, 7, 123-136. https://doi.org/10.22034/chemm.2023.365060.1614

[19] Reller, L. B.; Weinstein, M.; Jorgensen, J. H.; Ferraro, M. J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis. 2009, 49, 1749-1755. https://doi.org/10.1086/647952
https://doi.org/10.1086/647952

[20] Bonev, B.; Hooper, J.; Parisot, J. Principles of Assessing Bacterial Susceptibility to Antibiotics Using the Agar Diffusion Method. J. Antimicrob. Chemother. 2008, 61, 1295-1301. https://doi.org/10.1093/jac/dkn090
https://doi.org/10.1093/jac/dkn090

[21] Al-Saheb, R.; Makharza, S.; Al-Battah, F.; Abu-El-Halawa, R.; Kaimari, T.; Abu Abed, O. S. Synthesis of New Pyrazolone and Pyrazole-Based Adamantyl Chalcones and Antimicrobial Activity. Biosci. Rep. 2020, 40, BSR20201950. https://doi.org/10.1042/BSR20201950
https://doi.org/10.1042/BSR20201950

[22] Deska, A.; Zulhadjri, Z.; Norita O.; Efdi, M. Clay Enriched with Ca2+ and Cu2+ As the Catalyst for the Production of Methyl Esters from CPO on a Laboratory Scale. Chem. Chem. Technol. 2022, 16, 678-683. https://doi.org/10.23939/chcht16.04.678
https://doi.org/10.23939/chcht16.04.678

[23] Mhaibes, R. M. Antimicrobial and Antioxidant Activity of Heterocyclic Compounds Derived from New Chalcones. J. Med. Chem. Sci. 2023, 6, 931-937. https://doi.org/10.26655/jmchemsci.2023.4.25
https://doi.org/10.26655/JMCHEMSCI.2023.4.25

[24] Salum, K. A.; Alidmat, M. M.; Khairulddean, M.; Kamal, N. N. S. N. M.; Muhammad, M. Design, Synthesis, Characterization, and Cytotoxicity Activity Evaluation of Mono-Chalcones and New Pyrazolines Derivatives. J. Appl. Pharm Sci. 2020, 10, 020-036. https://doi.org/10.7324/japs.2020.10803
https://doi.org/10.7324/JAPS.2020.10803

[25] Pola, S.; Banoth, K. K.; Sankaranarayanan, M.; Ummani, R.; Garlapati, A. Design, Synthesis, in Silico Studies, and Evaluation of Novel Chalcones and their Pyrazoline Derivatives for Antibacterial and Antitubercular Activities. Med. Chem. Res. 2020, 29, 1819-1835. https://doi.org/10.1007/s00044-020-02602-8
https://doi.org/10.1007/s00044-020-02602-8