Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Synthesis of copper(i) chelates based on heterocyclic thioamides

Anatoliy Ranskiy1, Natalia Didenko2, Оlga Gordienko1, Таras Тіtov1,
Affiliation: 
1 Vinnytsia National Technical University, Department of Ecology, Chemistry and Environmental Protection Technologies, 95 Khmelnytske Road, Vinnytsia 21021, Ukraine 2 National Pirogov Memorial Medical University, Department of Pharmaceutical Chemistry, 56 Pirogov St., Vinnytsia 21018, Ukraine tarastitov88@gmail.com
DOI: 
https://doi.org/10.23939/chcht19.04.628
AttachmentSize
PDF icon full_text.pdf307.77 KB
Abstract: 
The paper presents modern data on the complexation of CuHal halides (Hal = Cl, Br, I; duration - 5 hours; temperature – 60-70°C) with arylamides of benzimidazole-2-thiocarboxylic acid HLI-X in alkaline aqueous-methanol solution. Such interaction forms CuLI-X chelates with a yield of 96–99% (method A), while the interaction of Cu2O (duration - 8 hours; temperature – 70-75°C) with thioamides HLI-X in methanol forms CuLI-X chelates with a yield of 90–95% (method B). The composition and structure of the new synthesized copper(I) chelates were studied by elemental analysis and IR spectroscopy. The use of copper(I) chelates as synthons in the production of biologically active compounds and new materials for technology is proposed.
References: 

[1] Priebbenow, D. L.; Bolm, C. Recent Advances in the Willgerodt-Kindler Reaction. Chem. Soc. Rev. 2013, 42, 7870-7880. https://doi.org/10.1039/C3CS60154D
https://doi.org/10.1039/c3cs60154d

[2] Zhang, Q.; Soulere, L.; Queneau, Y. Toward More Practical Methods of the Chemical Synthesis of Thioamides Using Sulfuration Agents: A Decade Update. Molecules 2023, 28, 3527. https://doi.org/10.3390/molecules28083527
https://doi.org/10.3390/molecules28083527

[3] Murai, T. Synthesis of Thioamides. Chemistry of Thioamides; Springer: Singapore, 2019. https://doi.org/10.1007/978-981-13-7828-7_3
https://doi.org/10.1007/978-981-13-7828-7_3

[4] Hansen, T. N.; Olsen, Ch. A. Contemporary Application of Thioamides and Methods for Their Synthesis. Chem. Eur. J. 2024, 30, e202303770. https://doi.org/10.1002/chem.202303770
https://doi.org/10.1002/chem.202303770

[5] Chojnacki, I.; Monka, M.; Serdiuk, I. E.; Bojarski, P.; Połoński, T., Olszewska, T. Copper(I) Halide Cluster-Based Coordination Polymers Modulated by Chiral Ditopic Dithiodianthranilide Ligands: Synthesis, Crystal Structure and Photoluminescence. CrystEngComm. 2021, 23, 299-307. https://doi.org/10.1039/D0CE01589J
https://doi.org/10.1039/D0CE01589J

[6] Lobana, T. S.; Sultana, R.; Hundal, G. Heterocyclic Thioamides of Copper(I): Synthesis and Crystal Structures of Copper Complexes with 1,3-Imidazoline-2-thiones in the Presence of Triphenyl Phosphine. Polyhedron 2008, 27, 1008-1016. https://doi.org/10.1016/j.poly.2007.11.036
https://doi.org/10.1016/j.poly.2007.11.036

[7] Long, D. L.; Zeng, D. X.; Xin, X. G.; Huang, X. Y.; Kang, B. Sh. Synthesis and Characterization of Copper(I) and Silver(I) Complexes Containing Thioamide Ligands. Synth. React. Inorg. Met.-Org. Chem. 1996, 26, 723-733. https://doi.org/10.1080/00945719608004331
https://doi.org/10.1080/00945719608004331

[8] Gordienko, O.; Titov, T.; Ranskiy, A.; Gumenchuk, O. Synthesis, Structure and Properties of Copper(II) Chelates with Benzimidazole-2-N-arylcarbothioamides. Chem. Chem. Technol. 2018, 12, 176-181. https://doi.org/10.23939/chcht12.02.176
https://doi.org/10.23939/chcht12.02.176

[9] Ranskiy, A.; Didenko, N.; Gordienko, O. Synthesis of Heterocyclic Thioamides and Copper(II) Coordination Compounds Based on Them. Chem. Chem. Technol. 2017, 11, 11-18. https://doi.org/10.23939/chcht11.01.011
https://doi.org/10.23939/chcht11.01.011

[10] Ranskiy, A.; Gordienko, O.; Didenko, N.; Titov, T.; Khutko, M. Synthesis, Structure and Application of Mixed-Ligand Coordination Compounds of Copper(II) with Substituted Thioamides. Chem. Chem. Technol. 2020, 14, 55-61. https://doi.org/10.23939/chcht14.01.055
https://doi.org/10.23939/chcht14.01.055

[11] Orysyk, S.; Pekhnyo, V.; Orysyk, V.; Zborovskii, Y.; Borovyk, P.; Mykhailo, V. Fundamental Aspects of the Coordination Chemistry of Transition Metals with Functionally Substituted Thioamides (Part 1). Ukrainian Chemistry Journal 2022, 88, 85-115. https://doi.org/10.33609/2708-129X.88.02.2022.85-115
https://doi.org/10.33609/2708-129X.88.02.2022.85-115

[12] Orysyk, S.; Pekhnyo, V.; Orysyk, V.; Zborovskii, Y.; Borovyk, P.; Vovk, M. Fundamental Aspects of Coordination Chemistry of Transition Metals with Functionally Substituted Thioamides (Part 2). Ukrainian Chemistry Journal 2022, 88, 3-27. https://doi.org/10.33609/2708-129X.88.03.2022.3-27
https://doi.org/10.33609/2708-129X.88.03.2022.3-27

[13] Huang, G.; Cierpicki, T.; Grembecka, J. Unlocking the Potential of the Thioamide Group in Drug Design and Development. Future Med. Chem. 2025, 17, 1-3. https://doi.org/10.1080/17568919.2024.2435245
https://doi.org/10.1080/17568919.2024.2435245

[14] Huang, G.; Cierpicki, T.; Grembecka, J. Thioamides in medicinal chemistry and as small molecule therapeutic agents. Eur. J. Med. Chem. 2024, 277, 116732. https://doi.org/10.1016/j.ejmech.2024.116732
https://doi.org/10.1016/j.ejmech.2024.116732

[15] Iagodzinski, T. S. Thioamides as Useful Synthons in the Synthesis of Heterocycles. Chem. Rev. 2003, 103, 197-228. https://doi.org/10.1021/cr0200015
https://doi.org/10.1021/cr0200015

[16] Zheng, P.; Zhou, C.; Lu, L.; Liu, B.; Ding, Y. Elesclomol: A Copper Ionophore Targeting Mitochondrial Metabolism for Cancer Therapy. J Exp Clin Cancer Res 2022, 41, 271. https://doi.org/10.1186/s13046-022-02485-0
https://doi.org/10.1186/s13046-022-02485-0

[17] Okajima, S.; Hamamoto, A.; Asano, M.; Isogawa, K.; Ito, H.; Kato, S.; Hirata, Y.; Furuta, K.; Takemori, H. Azepine Derivative T4FAT, a New Copper Chelator, Inhibits Tyrosinase. Biocem. Biophys. Res. Commun. 2019, 509, 209-215. https://doi.org/10.1016/j.bbrc.2018.12.105
https://doi.org/10.1016/j.bbrc.2018.12.105

[18] Riaz, Z.; Lee, Y.T.B.; Stjärnhage, J.; Movassaghi, S.; Söhnel, T.; Jamieson, M.F.S.; Shaheen, A.M.; Hanif, M.; Hartinger, G.C. Anticancer Ru and Os Complexes of N-(4-chlorophenyl)pyridine-2-carbothioamide: Substitution of the Labile Chlorido Ligand with Phosphines. J. Inorg. Biochem. 2023, 241, 112115. https://doi.org/10.1016/j.jinorgbio.2022.112115
https://doi.org/10.1016/j.jinorgbio.2022.112115

[19] Borkow, G.; Gabbay, J. Copper as a Biocidal Tool. Curr. Med. Chem. 2005, 12, 2163-2175. http://dx.doi.org/10.2174/0929867054637617
https://doi.org/10.2174/0929867054637617

[20] Tarik, A.; Yahia, H.; Lahcen, L. Determination of Ultra Trace Levels of Copper in Whole Blood by Adsorptive Stripping Voltammetry. J. Korean Chem. Soc. 2013, 57, 568-573. https://doi.org/10.5012/jkcs.2013.57.5.568
https://doi.org/10.5012/jkcs.2013.57.5.568

[21] Boulanouar, M.; Tarik, A.; Naceur, B. DFT Study of Some Copper Complexes and Their Derection Limit. Chem. Chem. Technol. 2022, 16, 185-194. https://doi.org/10.23939/chcht16.02.185
https://doi.org/10.23939/chcht16.02.185

[22] Hassan, Z.M.; Alattar, R.A.; Abass, S.K.; Mihsen H.H.; Abbas, Z.F.; Hussain. K.A. Synthesis, Characterization and Biological Activity of Mixed Ligand (Imine of Benzidine and 1,10-Phenanthroline) Complexes with Fe(II), Co(II), Ni(II) and Cu(II) Ions. Chem. Chem. Technol. 2022, 16, 15-24. https://doi.org/10.23939/chcht16.01.015
https://doi.org/10.23939/chcht16.01.015

[23] Ranskiy, А. P.; Boychenko, S. V.; Gordienko, О. А.; Didenko, N. О.; Voloshynets', V. A. Kompozytsiyni mastyl'ni materialy na osnovi tioamidiv ta yikh kompleksnykh spoluk. Syntez. Doslidzhennya. Vykorystannya; VNTU: Vinnytsia, 2012. https://press.vntu.edu.ua/index.php/vntu/catalog/book/207

[24] Didenko, N. О.; Ranskiy, А. P. Pryamyy syntez koordynatsiynykh spoluk kuprumu(II) iz zamishchenymy tioamidamy; VNTU: Vinnytsia, 2021. https://press.vntu.edu.ua/index.php/vntu/catalog/book/623

[25] Ranskiy, А. P.; Didenko, N. О.; Titov, Т. S.; Bezvozyuk, І. І. Mekhanizm vybirkovoho perenesennya z tochky zoru rezonansnoho potentsialu za Nechayevym [Online]. Scientific Works of Vinnytsia National Technical University. 2010, 4. https://praci.vntu.edu.ua/index.php/praci/article/view/230/228

[26] Bukvić, M.; Gajević, S.; Skulić, A.; Savić, S.; Ašonja, A.; Stojanović, B. Tribological Application of Nanocomposite Additives in Industrial Oils. Lubricants 2024, 12, 21. https://doi.org/10.3390/lubricants12010006
https://doi.org/10.3390/lubricants12010006

[27] Vahlas, C.; Caussat. B.; Serp, Ph.; Angelopoulos, G.N. Principles and applications of CVD powder technology. Mater. Sci. Eng.: R: Rep.. 2006, 53, 1-72. https://doi.org/10.1016/j.mser.2006.05.001
https://doi.org/10.1016/j.mser.2006.05.001

[28] Izyumskiy, M. S.; Neykovskiy, S. I.; Mel'nik, S. G.; Shtemenko, A. V. Klasternye khlorkarboksilaty direniya(III) kak novye iskhodnye veshchestva dlya khimicheskogo gazofaznogo metoda naneseniya renievykh pokrytiy. Issues of Chemistry and Chemical Technology 2013, 1, 134-136.

[29] Jensen, K. A.; Nielsen, P. H. Infrared Spectra of Thioamides and Selenoamides. Acta Chem. Scand. 1966, 20, 597-629.
https://doi.org/10.3891/acta.chem.scand.20-0597