Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Synthesis and Characterization of Functionalized Epoxy/SiO2 Hybrid with Graphene Oxide Nanosheets

Jevet E. D. López-Campos1, Genoveva Hernández-Padrón2 and Victor. M. Castaño3
Affiliation: 
1 Centro de Física Aplicada y Tecnología Avanzada, PCeIM, UNAM, Juriquilla 76230 Querétaro, Mexico. 2 Centro de Física Aplicada y Tecnología Avanzada, Nanotech Department, UNAM, Juriquilla 76230 Querétaro, Mexico. 3 Centro de Física Aplicada y Tecnología Avanzada, Materials Sci. and Eng. Department, UNAM, Juriquilla 76230 Querétaro, Mexico. genoveva@unam.mx, vmcastano@unam.mx
DOI: 
https://doi.org/10.23939/chcht19.01.108
AttachmentSize
PDF icon full_text.pdf2.29 MB
Abstract: 
Nanocomposites were prepared and characterized with a functionalized epoxy resin hybrid (REF) with SiO2 nanoparticles, synthesized by the in-situ sol-gel process, and graphene oxide (GO) nanosheets. The epoxy resin is synthesized with bisphenol A and epichlorohydrin for its subsequent functionalization with abietic acid, providing –OH groups having a greater number of active chemical sites on the surface so that they can join with the SiO2 particles synthesized in situ from TEOS and modified-Hummers GO. The nanocomposites were prepared with REF and a solution of TEOS 40 v/v%; to this hybrid material (HREF), two concentrations of GO at 1 wt% (HREF1) and 5 wt% (HREF5) were added. All materials were characterized by spectroscopic techniques FT-IR and Raman: showing groups -(COOH) from abietic acid, silanol -OH, which will bond with the same groups in the GO sheets. Thermogravimetric analysis (TGA) revealed that SiO2 nanoparticles decorated the basal plane of GO by covalent bonding TGA, increasing the thermal stability at 50 oC, HREF5 being the material with the highest degradation temperature. A homogeneous dispersion of SiO2/GO decorated sheets in the functionalized epoxy was studied using the SEM technique, with HREF1 as the most homogeneous. ASTM D2369 establishes that volatile organic content should not surpass 3.4 g/mL, and the materials prepared have only 0.23 g/mL, which marks the first step to achieve real applications in several industries.
References: 

[1] Ghaemy, M.; Hassanpour-Shahriari, A. Study of the Cure

Reaction of DGEBA/ABS Blend in the Presence of Aromatic

Diamine Iran. Polym. J. 2008, 17, 395-405.
https://doi.org/10.1111/j.1365-2869.2008.00677.x

[2] Raju, T.; Ding, Y.; He, Y.; Paula, M.; Yang, W.; Tibor, C.;

Sabu, T. Miscibility, Morphology, Thermal, and Mechanical

Properties of a DGEBA Based Epoxy Resin Toughened with a

Liquid Rubber. Polymer 2008, 49, 278-294.
https://doi.org/10.1016/j.polymer.2007.11.030

https://doi.org/10.1016/j.polymer.2007.11.030
https://doi.org/10.1016/j.polymer.2007.11.030

[3] Frigione, M.; Lettieri, M. Recent Advances and Trends of

Nanofilled/Nanostructured Epoxies. Materials (Basel) 2020, 13,

3415. https://doi.org/10.3390/ma13153415
https://doi.org/10.3390/ma13153415

[4] Shukla, V. Flow Modified Epoxy Resin: The Complete

Solution of Aerosol in 2-Pack Epoxy Adhesive. Pigment Resin

Technol. 2006, 35, 353-357.
https://doi.org/10.1111/j.1939-165X.2006.tb00148.x

https://doi.org/10.1108/03699420610711362
https://doi.org/10.1108/03699420610711362

[5] Brzozowski, Z.; Staszczak, S.; Koziol, P.; Zatorski, W.;

Bogdal, D. Development and Characterization of Novel Fire Safe

Epoxy Resins. Chem. Chem. Technol. 2009, 3, 269-276.

https://doi.org/10.23939/chcht03.04.269
https://doi.org/10.23939/chcht03.04.269

[6] Sánchez-Soto, M.; Pages, P.; Lacorte, T.; Briceño, K.;

Carrasco, F. Curing FTIR Study and Mechanical Characterization of

Glass Bead Filled Trifunctional Epoxy Composites. Compos. Sci.

Technol. 2007, 67, 1974-1985.
https://doi.org/10.1016/j.compscitech.2006.10.006

https://doi.org/10.1016/j.compscitech.2006.10.006
https://doi.org/10.1016/j.compscitech.2006.10.006

[7] Chen, S.; Bo, Y.; Shuxue, Z.; Limin, W. Preparation and

Characterization of Scratch and Mar Resistant Waterbone

Epoxy/Silica Nanocomposite Clearcoat. J. Appl. Polym. Sci. 2009,

112, 3634-3639.

[8] Hernandez-Padrón, G. Design of Hybrid Coatings by Sol-Gel

Process. In Alternative for Aerospace Use in Mexico; de Space

Fostering Latin American Societies, Springer, 2022; pp. 65-83.

[9] Chen, X.; Wen, S.; Feng T.; Yuan, X. High Solids Organic-

Inorganic Hybrid Coatings Based on Silicone-Epoxy-Silica Coating

with Improved Anticorrosion Performance for AA2024 Protection.

Prog. Org. Coat. 2020, 139, 105374.
https://doi.org/10.1016/j.porgcoat.2019.105374

http://dx.doi.org/10.1016/j.porgcoat.2019.105374
https://doi.org/10.1016/j.porgcoat.2019.105374

[10] Guo, S.-Y.; Luo, H.-H.; Tan, Z.; Chen, J.-Z.; Zhang, L.; Ren, J.

Impermeability and Interfacial Bonding Strength of TiO2-Graphene

Modified Epoxy Resin Coated OPC Concrete. Prog. Org. Coat.

2021, 151, 106029.

http://dx.doi.org/10.1016/j.porgcoat.2020.106029
https://doi.org/10.1016/j.porgcoat.2020.106029

[11] Ayala-Fonseca, L.A.; Amieva, E. J.-C.; Rodriguez-Gonzalez,

C.; Angeles-Chavez, C.; De la Rosa, E.; Castaño, V.M.; Salas, P.

Enhanced Raman Effect of Solvothermal Synthesized Reduced

Graphene Oxide/Titanium Dioxide Nanocomposites.

ChemistrySelect 2020, 5, 3789-3797.
https://doi.org/10.1002/slct.202000335

https://doi.org/10.1002/slct.202000335
https://doi.org/10.1002/slct.202000335

[12] An, J.-E.; Jeong, Y.G. Structure and Electric Heating

Performance of Graphene/Epoxy Composite Films. Eur. Polym. J.

2013, 49, 1322-1330.

https://doi.org/10.1016/j.eurpolymj.2013.02.005
https://doi.org/10.1016/j.eurpolymj.2013.02.005

[13] An, J.; Zhang, Y.; Zhang, X.; He, M.; Zhou, J.; Zhou, J.; Liu,

Y.; Chen, X.; Hu, Y.; Song, X., et al. Structure and Properties of

Epoxy Resin/Graphene Oxide Composites Prepared from Silicon

Dioxide-Modified Graphene Oxide. ACS Omega 2024, 9, 17577-

17591. https://doi.org/10.1021/acsomega.4c00707
https://doi.org/10.1021/acsomega.4c00707

[14] Papava, G.; Chitrekashvili, I.; Tatrishvili, T.; Gurgenishvili,

M.; Archvadze, K.; Dokhturishvili, N.; Gavashelidze, E.; Gelashvili,

N.; Liparteliani, R. Synthesis and Investigation of Properties of

Epoxy-Novolac Copolymers Based on Polycyclic Bisphenols of

Norbornane Type. Chem. Chem. Technol. 2024, 18, 546-557.

https://doi.org/10.23939/chcht18.04.546
https://doi.org/10.23939/chcht18.04.546

[15] Zhou, S.; Yan, J.; Yan, H.; Zhang, Y.; Huang, J.; Zhao, G.;

Liu, Y. ZrO2-anchored rGO Nanohybrid for Simultaneously

Enhancing the Wear Resistance and Anticorrosion Performance of

Multifunctional Epoxy Coatings. Prog. Org. Coat. 2022, 166,

106795. https://doi.org/10.1016/j.porgcoat.2022.106795
https://doi.org/10.1016/j.porgcoat.2022.106795

[16] Sukhyy, K.; Belyanovskaya, E.; Nosova, A.; Sukha, I.;

Sukhyy, M.; Huang, Y.; Kochergin, Y.; Hryhorenko, T. Dynamic

Mechanical Properties of Epoxy Composites Modified with

Polysulphide Rubber. Chem. Chem. Technol. 2022, 16, 432-439.

https://doi.org/10.23939/chcht16.03.432
https://doi.org/10.23939/chcht16.03.432

[17] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.;

Mukbaniani, O. Polymer-Silicate Composites with Modified

Minerals. Chem. Chem. Technol. 2017, 11, 201-209.

https://doi.org/10.23939/chcht11.02.201
https://doi.org/10.23939/chcht11.02.201

[18] Dutta, N.; Nath, S. S.; Dutta, R.; Baishya, J.; Borah, N.; Maji,

T. K. A Sustainable Approach to Improve Properties of PVC-CNT Nanocomposites Using Waste Eggshell as Biofiller and Heat

Stabilizer. ChemistrySelect 2025, 10, e202405963.

https://doi.org/10.1002/slct.202405963
https://doi.org/10.1002/slct.202405963

[19] Song, Q.; Wang, W.; Li, Y.; Yang, X.; Yu, W.; Yu, D.; Zhu,

X.; Du, S.; Qiu, J.; Ren, P. Epoxy Resin/(α-Al2O3/ZrO2)

Nanocomposite for Antifriction and Corrosion Resistance. ACS

Appl. Nano Mater. 2024, 7, 13756-13764.
https://doi.org/10.1021/acsanm.4c02473

https://doi.org/10.1021/acsanm.4c02473
https://doi.org/10.1021/acsanm.4c02473

[20] Zhil'tsova, S.; Brovko, O.; Leonova, N. Viscoelastic Properties

of Amine-Cured Epoxy-Titania Composites Obtained by the Sol-

Gel Method. Chem. Chem. Technol. 2018, 12, 202-206.

https://doi.org/10.23939/chcht12.02.202
https://doi.org/10.23939/chcht12.02.202

[21] Reyes-Tesillo, B.G.; López-Campos, J.E.D.; Mojica-Gómez,

J.; Ferrer-Pérez, J.A.; Hernández-Padrón, G. Effect of SiO2

Concentration on the Mechanical and Anticorrosive Properties of

the Hybrid PMMA/SiO2 Coating Synthesized in situ by Sol-Gel

Process. J. Phys.: Conf. Ser. 2024, 2804, 012002.
https://doi.org/10.1088/1742-6596/2804/1/012002

https://doi.org/10.1088/1742-6596/2804/1/012002
https://doi.org/10.1088/1742-6596/2804/1/012002

[22] López-Campos, J.E.D.; Mojica-Gómez, J.; Maciel-Cerda, A.;

Castaño, V.M.; Hernandez-Padron, G. Hybrid Epoxy-SiO2 /GO

Nanosheets Anti-Corrosive Coating for Aeronautic Aluminum

Al6061-T5. J. Coat. Technol. Res. 2023, 21, 559-574.
https://doi.org/10.1007/s11998-023-00838-8

http://dx.doi.org/10.1007/s11998-023-00838-8
https://doi.org/10.1007/s11998-023-00838-8

[23] Barbakadze, K.; Brostow, W.; Hnatchuk, N.; Lekishvili, G.;

Arziani, B.; Zagórski, K.; Lekishvili, N. Antibiocorrosive Hybrid

Materials with High Durability. Chem. Chem. Technol. 2021, 15,

500-511. https://doi.org/10.23939/chcht15.04.500
https://doi.org/10.23939/chcht15.04.500

[24] Hummers, W.S.; Offeman, R.E. Preparation of Graphitic

Oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
https://doi.org/10.1021/ja01539a017

http://dx.doi.org/10.1021/ja01539a017
https://doi.org/10.1021/ja01539a017

[25] Braun, D.; Cherdron, H.; Rehahn, M.; Ritter H.; Voit, B.

Epoxy Resins; de Polymer Synthesis: Theory and Practice;

Springer, 2015; pp. 318-322.

[26] Hernández-Padrón, G.; García-Garduño, M. Sol-Gel, One

Technology by Produced Nanohybrid with Anticorrosive Properties.

Physics Procedia 2013, 48, 102-108.
https://doi.org/10.1016/j.phpro.2013.07.017

https://doi.org/10.1016/j.phpro.2013.07.017
https://doi.org/10.1016/j.phpro.2013.07.017

[27] Drewniak, S.; Muzyka, R.; Stolarczyk, A.; Pustelny, T.;

Setkiewicz, M. Studies of Reduced Graphene Oxide and Graphite

Oxide in the Aspect of Their Possible Application in Gas Sensors.

Sensors 2016, 16, 103. https://doi.org/10.3390/s16010103
https://doi.org/10.3390/s16010103

[28] Chen, P.-H.; Sie, M.-C.; Jeng, P.-D.; Wu, R.-C.; Wang, C.-B.

Graphene Sponge as an Efficient and Recyclable Oil Absorbent.

AIP Conf. Proc. 2017, 1877, 030005.

https://doi.org/10.1063/1.4999861
https://doi.org/10.1063/1.4999861

[29] Ramirez-Palma, M. T.; Hernández-Padron, G.; Mójica-Gómez,

J.; Rojas-Gonzales, F.; Castaño, V. M. Nanostructured Epoxy-Based

Anticorrosive Coatings. Surf. Rev. Lett. 2020, 27, 1950202.
https://doi.org/10.1142/S0218625X19502020

https://doi.org/10.1142/S0218625X19502020
https://doi.org/10.1142/S0218625X19502020

[30] Araki, W.; Adachi, T. Viscoelasticity of Epoxy Resin/Silica

Hybrid Material Prepared via Sol-Gel Process: Considered in Terms

of Morphology. J. Appl. Polym. Sci. 2008, 107, 253-261.
https://doi.org/10.1002/app.27019

http://dx.doi.org/10.1002/app.27019
https://doi.org/10.1002/app.27019

[31] ASTM D-2369-20. Standard Test Method for Volatile Content
of Coatings.