Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Sustainable valorisation of fly ash into geopolymer-based adsorbent: structural optimization and methylene-blue removal performance

Khoa Dang Nguyen1, Anh Thi Kim Phan1, Anh Phuong Le Thi2, Sujitra Onutai3, Ky Ngoc Hoa Nguyen4
Affiliation: 
1 Faculty of Environment, Van Lang School of Technology, Van Lang University, Binh Loi Trung Ward, Ho Chi Minh City 70000, Vietnam 2 Research Center for Negative Emissions Technologies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan 3 Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Hainan, 570228, PR China 4 Faculty of Basic Sciences, University of Phan Thiet, Lam Dong Province, 77100, Vietnam khoa.nd@vlu.edu.vn
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf1.1 MB
Abstract: 
In this study, fly ash (FA)-based geopolymers were synthesized using varying proportions of sodium silicate/sodium hydroxide (Na₂SiO₃/ NaOH 10M) solution, ranging from 49% in the 51FA sample to 67% in the 33FA sample, used for the adsorption of methylene blue (MB) in water. Following curing at 60°C for 24 h, the porosity of the resulting geopolymers decreased, attributed to the enhanced polycondensation process driven by the increased Na₂SiO₃ content, which resulted in the formation of a more compact gel structure in the obtained geopolymer. The Weber–Morris model indicated that surface interactions with MB molecules were predominant in the 51FA sample, while pore-filling mechanisms were more pronounced in the 33FA geopolymer. Adsorption experiments revealed that all geopolymer samples conformed to the Langmuir isotherm model, with correlation coefficients approaching unity.
References: 

[1] Pham, N. Q.; Le, K. A. Coal Fly Ash in Vietnam and its Application as a Lightweight Material. Chem. Eng. Trans. 2021, 83, 31–36. https://doi.org/10.3303/CET2183006
[2] Mathapati, M.; Amate, K.; Durga Prasad, C.; Jayavardhana, M. L.; Hemanth Raju, T. A Review on Fly Ash Utilization. Mater. Today Proc. 2022, 50, 1535–1540. https://doi.org/10.1016/j.matpr.2021.09.106
[3] Li, H.; Xu, D. The Future Resources for eco-Building Materials: II. Fly ash And Coal Waste. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2009, 24, 667–672. http://doi.org/10.1007/s11595-009-4667-7
[4] Rao, Z.; Yu, W.; Yuan, H.; Wei, P.; Yang, F.; Nyarko-Appiah, J. E. Eco-Friendly and Efficient Alumina Recovery from Coal Fly Ash by Employing the CaO as an Additive During the Vacuum Carbothermic Reduction and Alkali Dissolution. J. Sustain. Metall. 2024, 10, 2216–2226 http://doi.org/10.1007/s40831-024-00916-0
[5] Davidovits, J. Geopolymers: Inorganic Polymeric New Materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. http://doi.org/10.1007/BF01912193
[6] Onutai, S.; Kobayashi, T.; Thavorniti, P.; Jiemsirilers, S. Porous Fly Ash-Based Geopolymer Composite Fiber as an Adsorbent for Removal of Heavy Metal Ions from Wastewater. Mater. Lett. 2019, 236, 30–33. https://doi.org/10.1016/j.matlet.2018.10.035
[7] Onutai, S.; Jiemsirilers, S.; Thavorniti, P.; Kobayashi, T. Aluminium Hydroxide Waste Based Geopolymer Composed of Fly Ash for Sustainable Cement Materials. Constr. Build. Mater. 2015, 101, 298–308. https://doi.org/10.1016/j.conbuildmat.2015.10.097
[8] Novais, R. M.; Carvalheiras, J.; Tobaldi, D. M.; Seabra, M. P.; Pullar, R. C.; Labrincha, J. A. Synthesis of Porous Biomass Fly Ash-Based Geopolymer Spheres for Efficient Removal of Methylene Blue from Wastewaters. J. Clean. Prod. 2019, 207, 350–362. https://doi.org/10.1016/j.jclepro.2018.09.265
[9] Maleki, A.; Mohammad, M.; Emdadi, Z.; Asim, N.; Azizi, M.; Safaei, J. Adsorbent Materials Based on a Geopolymer Paste for Dye Removal from Aqueous Solutions. Arab. J. Chem. 2020, 13, 3017–3025. https://doi.org/10.1016/j.arabjc.2018.08.011
[10] Onutai, S. In Development of geopolymer materials sourced with fly ash and industrial waste, 2016.
[11] Pimraksa, K.; Chindaprasirt, P.; Rungchet, A.; Sagoe-Crentsil, K.; Sato, T. Lightweight Geopolymer Made of Highly Porous Siliceous Materials with Various Na2O/Al2O3 and SiO2/Al2O3 Ratios. Mater. Sci. Eng. A 2011, 528, 6616–6623. https://doi.org/10.1016/j.msea.2011.04.044
[12] Nguyen, K. D.; Tran, A. T. H.; Kaus, N. H. M. Preparation and Characterization of Red Mud-Based Geopolymer Composited with Rice Husk Ash for the Adsorption of Bromocresol Green in Aqueous Solution. Chem. Chem. Technol. 2023, 17, 857–869. https://doi.org/10.23939/chcht17.04.857
[13] Yao, X.; Zhang, Z.; Zhu, H.; Chen, Y. Geopolymerization Process of Alkali–Metakaolinite Characterized by Isothermal Calorimetry. Thermochimica Acta 2009, 493, 49–54. https://doi.org/10.1016/j.tca.2009.04.002
[14] Sasui, S.; Kim, G.; van Riessen, A.; Lim, C.; Eu, H.; Park, J.; Nam, J. Effects of Na2SiO3/NaOH Ratio in Alkali Activator on the Microstructure, Strength and Chloride Ingress in fly Ash and GGBS Based Alkali Activated Concrete. J. Build. Eng. 2024, 98, 111255. https://doi.org/10.1016/j.jobe.2024.111255
[15] Salleh, M. A. M.; Mahmoud, D. K.; Karim, W. A.; Idris, A. Cationic and Anionic Dye Adsorption By Agricultural Solid Wastes: A Comprehensive Review. Desalination 2011, 280, 1-13. https://doi.org/10.1016/j.desal.2011.07.019
[16] Ma, G.; Zhu, Y.; Zhang, Z.; Li, L. Preparation and Characterization of Multi-Walled Carbon Nanotube/TiO2 Composites: Decontamination Organic Pollutant in Water. Appl. Surf. Sci. 2014, 313, 817–822. https://doi.org/10.1016/j.apsusc.2014.06.079
[17] Chen, Q.; He, Q.; Lv, M.; Xu, Y.; Yang, H.; Liu, X.; Wei, F. Selective Adsorption of Cationic Dyes by UiO-66-NH2. Appl. Surf. Sci. 2015, 327, 77–85. https://doi.org/10.1016/j.apsusc.2014.11.103
[18] Takele, T.; Angassa, K.; Abewaa, M.; Kebede, A. M.; Tessema, I. Adsorption of Methylene Blue from Textile Industrial Wastewater Using Activated Carbon Developed from H3PO4-Activated Khat Stem Waste. Biomass Convers. Biorefin. 2025, 15, 4085–4108. http://doi.org/10.1007/s13399-023-05245-y
[19] el Alouani, M.; Alehyen, S.; el Achouri, M.; Taibi, M. H. Removal of Cationic Dye - Methylene Blue- from Aqueous Solution by Adsorption on Fly Ash-Based Geopolymer. J. Mater. Environ. Sci. 2018, 9, 32–46. http://doi.org/10.26872/jmes.2018.9.1.5
[20] Modi, S.; Yadav, V. K.; Gacem, A.; Ali, I. H.; Dave, D.; Khan, S. H.; Yadav, K. K.; Rather, S.-u.; Ahn, Y.; Son, C. T.; et al. Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles. Water 2022, 14, 1749. http://doi.org/10.3390/w14111749
[21] Yang, Y.; Le, T.-C.-D.; Kudo, I.; Do, T.-M.-D.; Niihara, K.; Suematsu, H.; Thorogood, G. Pore-Forming Process in Dehydration of Metakaolin-Based Geopolymer. International Journal of Ceramic Engineering & Science 2021, 30, 211–216. https://doi.org/10.1002/ces2.10100
[22] Sulistiyo, Y. A.; Andriana, N.; Piluharto, B.; Zulfikar, Z. Silica Gels from Coal Fly Ash as Methylene Blue Adsorbent: Isotherm and Kinetic Studies. Bull. Chem. React. Eng. Catal. 2017, 12, 10. http://doi.org/10.9767/bcrec.12.2.766.263-272
[23] Sinha, D. K.; Kumar, A.; K.; Kumar, S. Development of Geopolymer Concrete from Fly Ash and Bottom Ash Mixture. Trans. Indian Ceram. Soc. 2014, 73, 143–148. https://doi.org/10.1080/0371750X.2014.922427
[24] Petrus, H. T.; Olvianas, M.; Shafiyurrahman, M. F.; Pratama, I. G.; Jenie, S. N.; Astuti, W.; Nurpratama, M. I.; Ekaputri, J. J.; Anggara, F. Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study. Gels 2022, 8, 233 http://doi.org/10.3390/gels8040233
[25] Dupuis, R.; Pellenq, R.; Champenois, J.-B.; Poulesquen, A. Dissociation Mechanisms of Dissolved Alkali Silicates in Sodium Hydroxide. J. Phys. Chem. C. 2020, 124, 8288–8294. http://doi.org/10.1021/acs.jpcc.0c01495
[26] Matinfar, M.; Nychka, J. A. A review of Sodium Silicate Solutions: Structure, Gelation, and Syneresis. Adv. Colloid Interface Sci. 2023, 322, 103036. https://doi.org/10.1016/j.cis.2023.103036
[27] Adewuyi, Y. G. Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation. ACS Omega 2021, 6, 15532–15542. http://doi.org/10.1021/acsomega.1c00662
[28] Luhar, I.; Luhar, S. A Comprehensive Review on Fly Ash-Based Geopolymer. J. Compos. Sci. 2022, 6, 219 http://doi.org/10.3390/jcs6080219
[29] Rahman, M. M.; Muttakin, M.; Pal, A.; Shafiullah, A. Z.; Saha, B. B. A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms. Energies 2019, 12, 4565 http://doi.org/10.3390/en12234565
[30] Rattanasak, U.; Chindaprasirt, P. Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 2009, 22, 1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022
[31] Guerrieri, M.; Sanjayan, J.; Mohd Ali, A. Z. Geopolymer damage due to leaching when exposed to water. In Concrete Durability and Service Life Planning; Kovler, K.; Zhutovsky, S.; Spatari, S.; Jensen, O. M., Eds.; Springer International Publishing, Cham, 2020; pp 74–78.
[32] Lv, X.-s.; Qin, Y.; Lin, Z.-x.; Tian, Z.-k.; Cui, X.-m. Inhibition of Efflorescence in Na-Based Geopolymer Inorganic Coating. ACS Omega 2020, 5, 14822–14830. http://doi.org/10.1021/acsomega.0c01919
[33] Morsy, M. S.; Alsayed, S. H.; Al-Salloum, Y.; Almusallam, T. Effect of Sodium Silicate to Sodium Hydroxide Ratios on Strength and Microstructure of Fly Ash Geopolymer Binder. Arab. J. Sci. Eng. 2014, 39, 4333–4339. http://doi.org/10.1007/s13369-014-1093-8
[34] Matinfar, M.; Nychka, J. A. Process Mapping of the Sol–Gel Transition in Acid-Initiated Sodium Silicate Solutions. Gels 2024, 10, 673 http://doi.org/10.3390/gels10100673
[35] Kwek, S. Y.; Awang, H.; Cheah, C. B. Influence of Liquid-to-Solid and Alkaline Activator (Sodium Silicate to Sodium Hydroxide) Ratios on Fresh and Hardened Properties of Alkali-Activated Palm Oil Fuel Ash Geopolymer Materials 2021, 14, 4253. https://doi.org/10.3390/ma14154253
[36] Efe, M.; Öz, A.; Bayrak, B.; Kaplan, G.; Aydın, A. C. Effect of Na2SiO3/NaOH Rate and Natural Zeolite Content on Basalt Fiber Reinforced Eco-Efficient Slag-Based Geopolymer Mortar Synthesis. Arch. Civ. Mech. Eng. 2024, 24, 215. http://doi.org/10.1007/s43452-024-01021-5
[37] Katoueizadeh, E.; Rasouli, M.; Zebarjad, S. M. A Comprehensive Study on the Gelation Process of Silica Gels from Sodium Silicate. J. Mater. Res. Technol. 2020, 9, 10157–10165. https://doi.org/10.1016/j.jmrt.2020.07.020
[38] Kugbe, J.; Matsue, N.; Henmi, T. Synthesis of Linde Type A zeolite–Goethite Nanocomposite as an Adsorbent for Cationic and Anionic Pollutants. J. Hazard. Mater. 2009, 164, 929–935. https://doi.org/10.1016/j.jhazmat.2008.08.080
[39] Nguyen, K. D.; My, Q. N. V.; Kim, A. P. T.; Tran, P. T.; Huynh, D. T. K.; Le, O. T. K. Coal Fly Ash-Slag and Slag-Based Geopolymer as an Absorbent for the Removal of Methylene Blue in Wastewater. STDJ 2022, 25, 2215–2223. https://doi.org/10.32508/stdj.v25i1.3421
[40] Rivera-Muñoz, E. M.; Nava, R.; Velázquez-Castillo, R.; Manzano-Ramírez, A.; Ramón, J.; Apátiga-Castro, M.; Rodríguez-López, A. Ion Exchange in Geopolymers. In New Trends in Ion Exchange Studies, Karakuş, S., Ed.; IntechOpen: Rijeka, 2018. http://doi.org/10.5772/intechopen.80970
[41] Li, C. J.; Zhang, Y. J.; Chen, H.; He, P. Y.; Meng, Q. Development of Porous and Reusable Geopolymer Adsorbents for Dye Wastewater Treatment. J. Clean. Prod. 2022, 348, 131278. https://doi.org/10.1016/j.jclepro.2022.131278
[42] El Alouani, M.; Alehyen, S.; El Achouri, M.; Taibi, M. h. Adsorption of Cationic Dye onto Fly Ash-Based Geopolymer: Batch and Fixed Bed Column Studies. MATEC Web Conf. 2018, 149, 02088.
[43] Hasani, N.; Selimi, T.; Mele, A.; Thaçi, V.; Halili, J.; Berisha, A.;Sadiku, M. Theoretical, Equilibrium, Kinetics and Thermodynamic Investigations of Methylene Blue Adsorption onto Lignite Coal. Molecules 2022, 27, 1856. https://doi.org/10.3390/molecules27061856
[44] Heah, C. Y.; Kamarudin, H.; Bakri, A. M. M. A.; Binhussain, M.; Luqman, M.; Nizar, I. K.; Ruzaidi, C. M.; Liew, Y. M. Effect of Curing Profile on Kaolin-based Geopolymers. Phys. Procedia 2011, 22, 305–311. https://doi.org/10.1016/j.phpro.2011.11.048
[45] Komnitsas, K.; Zaharaki, D. Geopolymerisation: A Review and Prospects for the Minerals Industry. Miner. Eng. 2007, 20, 1261–1277. https://doi.org/10.1016/j.mineng.2007.07.011
[46] Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S. K. Geopolymer Concrete: A Review of Some Recent Developments. Constr. Build. Mater. 2015, 85, 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
[47] Temuujin, J.; Minjigmaa, A.; Lee, M.; Chen-Tan, N.; van Riessen, A. Characterisation of Class F fly Ash Geopolymer Pastes Immersed in Acid and Alkaline Solutions. Cem. Concr. Compos. 2011, 33, 1086–1091. https://doi.org/10.1016/j.cemconcomp.2011.08.008
[48] Bakharev, T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 2005, 35, 1224–1232. https://doi.org/10.1016/j.cemconres.2004.06.031
[49] Zhou, Y.; Zhang, M.; Hu, X.; Wang, X.; Niu, J.; Ma, T. Adsorption of Cationic Dyes on a Cellulose-Based Multicarboxyl Adsorbent. J. Chem. Eng. Data 2013, 58, 413–421. http://doi.org/10.1021/je301140c