Sustainable Polymerization of 1,3-Dioxolane Functionalized with Benzoic Anhydride: A Green Approach with Maghnite-H⁺

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Hodhaifa Derdar1,2, Mohamed Benachour2, Zakaria Cherifi1,2, Geoffrey Robert Mitchell3, Nabahat Sahli2, Amine Harrane4, Rachid Meghabar2, Redouane Chebout 1, Khaldoun Bachari1
Affiliation: 
1 Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle,Bou-Ismail CP 42004, Tipaza, Algeria 2 Laboratoire de chimie des polymères. Département de chimie. Faculté des sciences exactes et appliquées. Université Oran1 Ahmed Benbella, BP 1524, El-Mnaouer, 31000 Oran, Algeria 3 Centre for Rapid and Sustainable Product Development, Institute Polytechnic of Leiria, Marinha Grande, Portugal 4 Department of Chemistry, FSEI University of Abdelhamid Ibn Badis – Mostaganem, Algeria hodhaifa-27@outlook.fr
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf1.13 MB
Abstract: 
This study presents a green approach to the cationic polymerization of 1,3-dioxolane using Maghnite-H⁺, a protonated Algerian montmorillonite clay, as an eco-friendly, non-toxic, and cost-effective catalyst. In combination with benzoic anhydride as a co-monomer, Maghnite-H⁺ effectively initiated bulk polymerization without conventional toxic initiators. Reaction conditions were optimized by varying temperature, time, catalyst loading, and co-initiator concentration. The highest yield (52%) was obtained at 25 °C after 1 hour. The resulting poly(1,3-dioxolane) was characterized by FT-IR, ¹H NMR, and UV-Vis spectroscopy, confirming successful polymer formation. Thermogravimetric analysis (TGA) indicated good thermal stability with a degradation temperature around 300 °C. Molecular weight, estimated by UV-Vis and ¹H NMR, was approximately 9700 g/mol, suggesting controlled polymerization. These findings demonstrate the potential of Mag-H⁺ as a sustainable alternative catalyst, supporting environmentally friendly strategies in polymer synthesis and contributing to the development of green materials.
References: 

[1] Nuyken, O.; Pask, S.D. Ring-Opening Polymerization—An Introductory Review. Polymers 2013, 5, 361–403. https://doi.org/10.3390/polym5020361
[2] Haque, F.M.; Grayson, S.M. The Synthesis, Properties and Potential Applications of Cyclic Polymers. Nat. Chem. 2020, 12, 433–444. https://doi.org/10.1038/s41557-020-0440-5
[3] Gregory, G.L.; López-Vidal, E.M.; Buchard, A. Polymers from Sugars: Cyclic Monomer Synthesis, Ring-Opening Polymerisation, Material Properties and Applications. Chem. Commun. 2017, 53, 2198–2217. https://doi.org/10.1039/C6CC09578J
[4] Draoua, Z.; Harrane, A.; Belbachir, M. Amphiphilic Biodegradable Poly(ϵ-caprolactone)-Poly(ethylene glycol)-Poly(ϵ-caprolactone) Triblock Copolymer Synthesis by Maghnite-H⁺ as a Green Catalyst. J. Macromol. Sci. Part A Pure Appl. Chem. 2015, 52, 130–137. https://doi.org/10.1080/10601325.2015.980763
[5] Du, J.; Peng, Y.; Zhang, T.; Ding, Z.; Zheng, Z. Synthesis and Characterization of pH-Sensitive Networks Containing Degradable Poly(1,3-dioxolane) Segments. J. Appl. Polym. Sci. 2002, 83, 1678–1682. https://doi.org/10.1002/app.10080
[6] Yang, X.; Ye, D.; Wang, C.; Chen, Y.; Jiang, X.; Yang, Y.; Liu, Z. Simultaneously Catalyze 1,3-Dioxolane Polymerization and Construct a Hybrid Protection Layer on Lithium Anode by InF₃ Catalyst. J. Power Sources 2024, 600, 234262. https://doi.org/10.1016/j.jpowsour.2024.234262
[7] Ferrahi, M.I.; Belbachir, M. Cyclic Polyesters Prepared by Poly(oxypropyleneOxymaloyl) Ring-Chain Reactions. Express Polym. Lett. 2007, 1, 24–26. https://doi.org/10.3144/expresspolymlett.2007.5
[8] Nabiyan, A.; Max, J.B.; Schacher, F.H. Double Hydrophilic Copolymers – Synthetic Approaches, Architectural Variety, and Current Application Fields. Chem. Soc. Rev. 2022, 51, 995–1044. https://doi.org/10.1039/D1CS00086A
[9] Coenen, A.M.J.; Harings, J.A.W.; Ghazanfari, S.; Jockenhoevel, S.; Bernaerts, K.V. Formation of Cyclic Structures in the Cationic Ring-Opening Polymerization of 1,3-Dioxolane. RSC Adv. 2020, 10, 9623–9632. https://doi.org/10.1039/D0RA00904K
[10] Yang, P.; Ratcliffe, L.P.D.; Armes, S.P. Efficient Synthesis of Poly(methacrylic acid)-block-Poly(styrene-alt-N-phenylmaleimide) Diblock Copolymer Lamellae Using RAFT Dispersion Polymerization. Macromolecules 2013, 46, 8545–8556. https://doi.org/10.1021/ma401797a
[11] Harrane, A.; Meghabar, R.; Belbachir, M. Kinetics of the Ring-Opening Polymerization of ε-Caprolactone Catalysed by a Proton-ExchangedMontmorillonite Clay. React. Funct. Polym. 2006, 66, 1696–1702. https://doi.org/10.1016/j.reactfunctpolym.2006.07.006
[12] Kubisa, P. Degradation of Poly(1,3-dioxolane). Depolymerization versus Hydrolysis. Polym. Degrad. Stab. 2023, 72, 681–686. https://doi.org/10.1002/pi.6532
[13] Rugh, H.J.; Abdo, E.E.; Lee, J.; Kang, C.; Bem, J.N.; Balsara, N.P.; Coates, G.W. Random Copolymerization of Substituted Dioxolanes: Rational Design of High-Performance Polymer Electrolytes. ACS Appl. Polym. Mater. 2024, 6, 21. https://doi.org/10.1021/acsapm.4c02928
[14] Attia, F.; Tran, T.; Bui, V.; Valluri, B.; Deng, E.; Zhang, G.; Esmaeili, N.; Huang, L.; Lin, H. Bottlebrush Polymers of Poly(1,3-dioxolane) Acetate for Membrane CO₂/N₂ Separation. Chem. Mater. 2024, 36, 19. https://doi.org/10.1021/acs.chemmater.4c01679
[15] Penczek, S.; Pretula, J. Activated Monomer Mechanism (AMM) in Cationic Ring-Opening Polymerization. The Origin of the AMM and Further Development in Polymerization of Cyclic Esters. ACS Macro Lett. 2021, 10, 1377–1397. https://doi.org/10.1021/acsmacrolett.1c00509
[16] Penczek, S.; Kubisa, P. Kinetics and Mechanism in Anionic Ring-Opening Polymerization. Makromol. Chem. Macromol. Symp. 1993, 67, 15–42. https://doi.org/10.1002/masy.19930670104
[17] Hester, H.G.; Abel, B.A.; Coates, G.W. Ultra-High-Molecular-Weight Poly(dioxolane): Enhancing the Mechanical Performance of a Chemically Recyclable Polymer. J. Am. Chem. Soc. 2023, 145, 8800–8804. https://doi.org/10.1021/jacs.3c01901
[18] Derdar, H.; Belbachir, M.; Harrane, A. A Green Synthesis of Polylimonene Using Maghnite-H⁺, an Exchanged Montmorillonite Clay, as Eco-Catalyst. Bull. Chem. React. Eng. Catal. 2019, 14, 69–79. https://doi.org/10.9767/bcrec.14.1.2692.69-78
[19] Derdar, H.; Belbachir, M.; Hennaoui, F.; Akeb, M.; Harrane, A. Green Copolymerization of Limonene with β-Pinene Catalyzed by an Eco-Catalyst Maghnite-H⁺. Polym. Sci. Ser. B 2018, 60, 555–562. https://doi.org/10.1134/S1560090418050056
[20] Elabed, Z.O.; Kherroub, D.E.; Derdar, H.; Belbachir, M. Novel Cationic Polymerization of β-Myrcene Using a Proton-Exchanged Clay (Maghnite-H⁺). Polym. Sci. Ser. B 2021, 63, 480–487. https://doi.org/10.1134/S1560090421050043
[21] Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. Polymerization of Ethylene Glycol Dimethacrylate (EGDM) Using an Algerian Clay as Eco-Catalyst (Maghnite-H⁺ and Maghnite-Na⁺). Bull. Chem. React. Eng. Catal. 2020, 15, 221–230. https://doi.org/10.9767/bcrec.15.1.6297.221-230
[22] Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. A New Green Catalyst for Synthesis of Bis-Macromonomers of Polyethylene Glycol (PEG). Chem. Chem. Technol. 2020, 14, 468–473. https://doi.org/10.23939/chcht14.04.468
[23] Derdar, H.; Mitchell, G.R.; Chaibedraa, S.; Mahendra, V.S.; Cherifi, Z.; Bachari, K.; Chebout, R.; Touahra, F.; Meghabar, R.; Belbachir, M. Synthesis and Characterization of Copolymers and Nanocomposites from Limonene, Styrene, and Organomodified Clay Using an Ultrasonic-Assisted Method. Polymers 2022, 14, 2820. https://doi.org/10.3390/polym14142820
[24] Baghdadli, M.C.; Derdar, H.; Cherifi, Z.; Harrane, A.; Meghabar, R. Nanocomposites by in situ Polymerization Based on Styrene-Maleic Anhydride Copolymer and Clay. Polym. Bull. 2023, 80, 6869–6883. https://doi.org/10.1007/s00289-022-04392-y
[25] Bennabi, S.; Belbachir, M. Synthesis and Characterization of New Organometallic Hybrid Material LCP-1 Based on MOF (Metal–Organic Framework) and Maghnite-H⁺, a Proton-Exchanged Montmorillonite Clay, as Catalytic Support. J. Inorg. Organomet. Polym. 2017, 27, 1787–1799.https://doi.org/10.1007/s10904-017-0643-4
[26] Aiche, S.S.; Derdar, H.; Cherifi, Z.; Belbachir, M.; Meghabar, R. Activation and Characterization of Algerian Kaolinite, a New and Green Catalyst for the Synthesis of Polystyrene and Poly(1,3-Dioxolane). Chem. Chem. Technol. 2021, 15, 551–558. https://doi.org/10.23939/chcht15.04.551