Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Oxidative CO2 Dehydrogenation of Butane on Microspherical Zeolite-Containing Composites Based on Ukrainian Kaolin

Oleksandra Pertko1, Yuliya Voloshyna1, Lyubov Patrylak1, 2, Angela Yakovenko1
Affiliation: 
1 V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, 1 Akademika Kukharia St., Kyiv 02094, Ukraine 2 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Beresteiskyi Ave., Kyiv 03056, Ukraine o.pertko@gmail.com
DOI: 
https://doi.org/10.23939/chcht19.03.455
AttachmentSize
PDF icon full_text.pdf1.03 MB
Abstract: 
In the present study, zeolite-containing microspherical composites based on Ukrainian kaolin were synthesized and modified with ammonium, lanthanum, and zirconium compounds. The modified composites were dealuminated by thermal steaming. The obtained materials were characterized by various physical and chemical methods and tested in the reaction of oxidative dehydrogenation of butane with the participation of CO2. The influence of several factors on the characteristics of the synthesized samples and related changes in their activity and selectivity were analyzed. The results of the work showed the possibility of using such composites as catalysts for this reaction.
References: 

[1] Ren, T.; Patel, M.; Blok, K. Olefins from Conventional and Heavy Feedstocks: Energy Use in Steam Cracking and Alternative Processes. Energy 2006, 31, 425-451. https://doi.org/10.1016/j.energy.2005.04.001
https://doi.org/10.1016/j.energy.2005.04.001

[2] Bender, M. An Overview of Industrial Processes for the Production of Olefins - C4 Hydrocarbons. ChemBioEng Rev. 2014, 1, 136-147. https://doi.org/10.1002/cben.201400016
https://doi.org/10.1002/cben.201400016

[3] Cespi, D.; Passarini, F.; Vassura, I.; Cavani, F. Butadiene from Biomass, a Life Cycle Perspective to Address Sustainability in the Chemical Industry. Green Chem. 2016, 18, 1625-1638. https://doi.org/10.1039/C5GC02148K
https://doi.org/10.1039/C5GC02148K

[4] Kyriienko, P. I.; Larina, O. V.; Soloviev, S. O.; Orlyk, S. M.; Calers, C.; Dzwigaj, S. Ethanol Conversion into 1,3-Butadiene by the Lebedev Method over MTaSiBEA Zeolites (M = Ag, Cu, Zn). ACS Sustainable Chem. Eng. 2017, 5, 2075-2083. https://doi.org/10.1021/acssuschemeng.6b01728
https://doi.org/10.1021/acssuschemeng.6b01728

[5] Larina, O. V.; Kurmach, M. M.; Kyriienko, P. I.; Alekseenko, L. M.; Shvets, O. V.; Soloviev, S. O. Influence of Acid-Base Characteristics of Hierarchical Cu/Zr-MTW Zeolites on Their Catalytic Properties in 1,3-Butadiene Production from Ethanol-Water Mixtures. Theor. Exp. Chem. 2021, 57, 343-350. https://doi.org/10.1007/s11237-021-09703-4
https://doi.org/10.1007/s11237-021-09703-4

[6] Kyriienko, P. I.; Larina, O. V.; Balakin, D. Yu.; Soloviev, S. O.; Orlyk, S. M. Influence of Copper and Silver on Catalytic Performance of MgO-SiO2 System for 1,3-Butadiene Production from Aqueous Ethanol. Catal. Lett. 2022, 152, 921-930. https://doi.org/10.1007/s10562-021-03704-7
https://doi.org/10.1007/s10562-021-03704-7

[7] Larina, O. V.; Zikrata, O. V.; Alekseenko, L. M.; Soloviev, S. O.; Orlyk, S. M. The Effect of Modification of Zn-Mg(Zr)Si Oxide Catalysts with Rare-Earth Elements (Y, La, Ce) in the Ethanol-to-1,3-Butadiene Process. Appl. Nanosci. 2023, 13, 7101-7114. https://doi.org/10.1007/s13204-023-02876-5
https://doi.org/10.1007/s13204-023-02876-5

[8] Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114, 10613-10653. https://doi.org/10.1021/cr5002436
https://doi.org/10.1021/cr5002436

[9] Camacho-Bunquin, J.; Ferrandon, M. S.; Sohn, H.; Kropf, A. J.; Yang, C.; Wen, J.; Hackler, R. A.; Liu, C.; Celik, G.; Marshall, C. L.; Stair, P. C.; Delferro, M. Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of n-Butane to 1,3-Butadiene. ACS Catal. 2018, 8, 10058-10063. https://doi.org/10.1021/acscatal.8b02794
https://doi.org/10.1021/acscatal.8b02794

[10] Zhang, J.; Liu, X.; Blume, R.; Zhang, A.; Schlögl, R.; Su, D. S. Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane. Science 2008, 322, 73-77. https://doi.org/10.1126/science.1161916
https://doi.org/10.1126/science.1161916

[11] Coperet, C. C−H Bond Activation and Organometallic Intermediates on Isolated Metal Centers on Oxide Surfaces. Chem. Rev. 2010, 110, 656-680. https://doi.org/10.1021/cr900122p
https://doi.org/10.1021/cr900122p

[12] Tanimu, G.; Aitani, A. M.; Asaoka, S.; Alasiri, H. Oxidative Dehydrogenation of N-Butane to Butadiene Catalyzed by New Mesoporous Mixed Oxides NiO-(Beta-Bi2O3)-Bi2SiO5/SBA-15 System. Mol. Catal. 2020, 488, 110893. https://doi.org/10.1016/j.mcat.2020.110893
https://doi.org/10.1016/j.mcat.2020.110893

[13] BP. Statistical Review of World Energy 2021. BP p.l.c., 2021. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdf... (accessed 2024-11-04).

[14] Redkina, A.; Konovalova, N.; Kravchenko, N.; Strelko, V. Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation. Chem. Chem. Technol. 2022, 16, 259-266. https://doi.org/10.23939/chcht16.02.259
https://doi.org/10.23939/chcht16.02.259

[15] Fedevych, O. Study on Heterogeneous Catalytic Oxidative Dehydrogenation of Isopropylbenzene to α-Methylstyrene. Chem. Chem. Technol. 2022, 16, 507-514. https://doi.org/10.23939/chcht16.04.507
https://doi.org/10.23939/chcht16.04.507

[16] Murgia, V.; Torres, E.; Gottifredi, J.; Sham, E. Sol-Gel Synthesis of V2O5-SiO2 Catalyst in the Oxidative Dehydrogenation of n-Butane. Appl. Catal. A: Gen. 2006, 312, 134-143. https://doi.org/10.1016/j.apcata.2006.06.042
https://doi.org/10.1016/j.apcata.2006.06.042

[17] Gaspar, N. J.; Pasternak, I. S. H2S Promoted Oxidative Dehydrogenation of Ethane. Can. J. Chem. Eng. 1971, 49, 248-251. https://doi.org/10.1002/cjce.5450490213
https://doi.org/10.1002/cjce.5450490213

[18] Jiang, X.; Sharma, L.; Fung, V.; Park, S. J.; Jones, C. W.; Sumpter, B. G.; Baltrusaitis, J.; Wu, Z. Oxidative Dehydrogenation of Propane to Propylene with Soft Oxidants via Heterogeneous Catalysis. ACS Catal. 2021, 11, 2182-2234. https://doi.org/10.1021/acscatal.0c03999
https://doi.org/10.1021/acscatal.0c03999

[19] Pérez-Ramírez, J.; Gallardo-Llamas, A. Impact of the Preparation Method and Iron Impurities in Fe-ZSM-5 Zeolites for Propylene Production via Oxidative Dehydrogenation of Propane with N2O. Appl. Catal. A: Gen. 2005, 279, 117-123. https://doi.org/10.1016/j.apcata.2004.10.020
https://doi.org/10.1016/j.apcata.2004.10.020

[20] Dasireddy, V. D. B. C.; Huš, M.; Likozar, B. Effect of O2, CO2 and N2O on Ni-Mo/Al2O3 Catalyst Oxygen Mobility in n-Butane Activation and Conversion to 1,3-Butadiene. Catal. Sci. Technol. 2017, 7, 3291-3302. https://doi.org/10.1039/C7CY01033H
https://doi.org/10.1039/C7CY01033H

[21] Gambo, Y.; Adamu, S.; Tanimu, G.; Abdullahi, I. M.; Lucky, R. A.; Ba-Shammakh, M. S.; Hossain, Mohammad. M. CO2-Mediated Oxidative Dehydrogenation of Light Alkanes to Olefins: Advances and Perspectives in Catalyst Design and Process Improvement. Appl. Catal. A: Gen. 2021, 623, 118273. https://doi.org/10.1016/j.apcata.2021.118273
https://doi.org/10.1016/j.apcata.2021.118273

[22] Xie, Z.; Tian, D.; Xie, M.; Yang, S.-Z.; Xu, Y.; Rui, N.; Lee, J. H.; Senanayake, S. D.; Li, K.; Wang, H.; et al. Interfacial Active Sites for CO2 Assisted Selective Cleavage of C-C/C-H Bonds in Ethane. Chem 2020, 6, 2703-2716. https://doi.org/10.1016/j.chempr.2020.07.011
https://doi.org/10.1016/j.chempr.2020.07.011

[23] Volpe, M.; Tonetto, G.; De Lasa, H. Butane Dehydrogenation on Vanadium Supported Catalysts under Oxygen Free Atmosphere. Appl. Catal. A: Gen. 2004, 272, 69-78. https://doi.org/10.1016/j.apcata.2004.05.017
https://doi.org/10.1016/j.apcata.2004.05.017

[24] Michorczyk, P.; Zeńczak-Tomera, K.; Michorczyk, B.; Węgrzyniak, A.; Basta, M.; Millot, Y.; Valentin, L.; Dzwigaj, S. Effect of Dealumination on the Catalytic Performance of Cr-Containing Beta Zeolite in Carbon Dioxide Assisted Propane Dehydrogenation. J. CO2 Util. 2020, 36, 54-63. https://doi.org/10.1016/j.jcou.2019.09.018
https://doi.org/10.1016/j.jcou.2019.09.018

[25] Ajayi, B. P.; Rabindran Jermy, B.; Abussaud, B. A.; Al-Khattaf, S. Oxidative Dehydrogenation of n-Butane over Bimetallic Mesoporous and Microporous Zeolites with CO2 as Mild Oxidant. J. Porous Mater. 2013, 20, 1257-1270. https://doi.org/10.1007/s10934-013-9710-6
https://doi.org/10.1007/s10934-013-9710-6

[26] Mehdad, A.; Gould, N. S.; Xu, B.; Lobo, R. F. Effect of Steam and CO2 on Ethane Activation over Zn-ZSM-5. Catal. Sci. Technol. 2018, 8, 358-366. https://doi.org/10.1039/C7CY01850A
https://doi.org/10.1039/C7CY01850A

[27] Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Y.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521-531. https://doi.org/10.23939/chcht16.04.521
https://doi.org/10.23939/chcht16.04.521

[28] Voloshyna, Y.; Pertko, O.; Povazhnyi, V.; Patrylak, L.; Yakovenko, A. Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons. Chem. Chem. Technol. 2023, 17, 373-385. https://doi.org/10.23939/chcht17.02.373
https://doi.org/10.23939/chcht17.02.373

[29] Saputra, E.; Budihardjo, M. A.; Bahri, S.; Pinem, J. A. Cobalt-Exchanged Natural Zeolite Catalysts for Catalytic Oxidation of Phenolic Contaminants in Aqueous Solutions. J. Water Process Eng. 2016, 12, 47-51. https://doi.org/10.1016/j.jwpe.2016.05.012
https://doi.org/10.1016/j.jwpe.2016.05.012

[30] Inchaurrondo, N. S.; Font, J. Clay, Zeolite and Oxide Minerals: Natural Catalytic Materials for the Ozonation of Organic Pollutants. Molecules 2022, 27, 2151. https://doi.org/10.3390/molecules27072151
https://doi.org/10.3390/molecules27072151

[31] Abdulloh, A.; Rahmah, U.; Permana, A. J.; Mahdy, A. A.; Budiastanti, T. A.; Fahmi, M. Z. Cracking Optimization of Palmitic Acid Using Fe3+ Modified Natural Mordenite for Producing Aviation Fuel Compounds. Chem. Chem. Technol. 2023, 17, 625-635. https://doi.org/10.23939/chcht17.03.625
https://doi.org/10.23939/chcht17.03.625

[32] Himpsl F.L. Method for Producing Cracking Catalyst. US4581341, April 8, 1986.

[33] Álvarez, A.; Borges, M.; Corral‐Pérez, J. J.; Olcina, J. G.; Hu, L.; Cornu, D.; Huang, R.; Stoian, D.; Urakawa, A. CO2 Activation over Catalytic Surfaces. ChemPhysChem 2017, 18, 3135-3141. https://doi.org/10.1002/cphc.201700782
https://doi.org/10.1002/cphc.201700782