Optimization and Modeling of Adsorption-Desorption Systems for Liquid-Phase Propane-Propylene Purification
| Attachment | Size |
|---|---|
| 522.12 KB |
[1] Redkina, A.; Konovalova, N.; Kravchenko, N.; Strelko, V. Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation. Chem. Chem. Technol. 2022, 16, 259–266. https://doi.org/10.23939/chcht16.02.259
[2] Pertko, O.; Voloshyna, Y.; Patrylak, L.; Yakovenko, A. Oxidative CO2 Dehydrogenation of Butane on Microspherical Zeolite-Containing Composites Based on Ukrainian Kaolin. Chem. Chem. Technol. 2025, 19, 455–462. https://doi.org/10.23939/chcht19.03.455
[3] Lyubchyk, S.I.; Lyubchyk, S.B.; Lyubchyk, A.I. Characterization of Adsorption Properties Inherent to Zirconia Dioxide for Different Positions of Yttrium in the ZrO2–Y2O3 Lattice. Semicond. Phys. Quantum Electron. Optoelectron. 2022, 25, 362–371.
[4] Seabra, R.; Dias, R.O.M.; Regufe, M.J.; Ribeiro, A.M.; Rodrigues, A.E.; Ferreira, A.F.P. Propane and Propylene Separation with Carbon Dioxide at Mild Temperatures by Gas-Phase Simulated Moving Bed in Binderfree Zeolite 13X. Ind. Eng. Chem. Res. 2023, 62, 12600–12612. https://doi.org/10.1021/acs.iecr.3c01601
[5] Cheng, L.S.; Wilson, S.T. Process for separating propylene from propane (U.S. Patent No. 6,293,999). U.S. Patent and Trademark Office, 2001.
[6] Hu, P.; Hu, J.; Liu, H.; Wang, H.; Zhou, J.; Krishna, R.; Ji, H. Quasi-Orthogonal Configuration of Propylene within a Scalable Metal-Organic Framework Enables its Purification from Quinary Propane Dehydrogenation Byproducts. ACS Cent. Sci. 2022, 8, 1159–1168. https://doi.org/10.1021/acscentsci.2c00554
[7] Lei, Y.; Yu, Z.; Wei, Z.; Liu, X.; Luo, H.; Chen, Y.; Liang, X.; Kontogeorgis, G.M. Energy-Efficient Separation of Propylene/Propane by Introducing a Tailor-Made Ionic Liquid Solvent. Fuel 2022, 326, 124930. https://doi.org/10.1016/j.fuel.2022.124930
[8] Su, Y.; Otake, K.; Zheng, J.J.; Wang, P.; Lin, Q.; Kitagawa, S.; Gu, C. Diffusion-Rate Sieving of Propylene and Propane Mixtures in a Cooperatively Dynamic Porous Crystal. Nat. Commun. 2024, 15, 2898. https://doi.org/10.1038/s41467-024-47268-7
[9] Li, L.; Xiang, F.; Li, Y.; Yang, Y.; Yuan, Z.; Chen, Y.; Yuan, F.; He, L.; Xiang, S.; Chen, B.; Zhang, Z. Optimizing Propylene/Propane Sieving Separation through gate-Pressure Control within a Flexible Organic Framework. Angew. Chem. Int. Ed. 2025, 64, e202419047. https://doi.org/10.1002/anie.202419047
[10] Yang, L.; Liu, Y.; Zheng, F.; Shen, F.; Liu, B.; Krishna, R.; Zhang, Z.; Yang, Q.; Ren, Q.; Bao, Z. Leveraging Diffusion Kinetics to Reverse Propane/Propylene Adsorption in Zeolitic Imidazolate Framework-8. ACS Nano 2024, 18, 3614–3626. https://doi.org/10.1021/acsnano.3c11385
[11] Khraisheh, M.; AlMomani, F.; Walker, G. High Purity/Recovery Separation of Propylene from Propyne Using Anion Pillared Metal-Organic Framework: Application of Vacuum Swing Adsorption (VSA). Energies 2021, 14, 609. https://doi.org/10.3390/en14030609
[12] Guo, M.; Kanezashi, M. Recent Progress in a Membrane-Based Technique for Propylene/Propane Separation. Membranes 2021, 11, 310. https://doi.org/10.3390/membranes11050310
[13] Xie, F.; Wang, H.; Li, J. Microporous Metal-Organic Frameworks for the Purification of Propylene. J. Mater. Chem. A 2023, 11, 12425–12433. https://doi.org/10.1039/D2TA09326J
[14] National Institute of Standards and Technology (NIST). Resources: Calibration Procedures. 2025. https://www.nist.gov/pml/owm/laboratory-metrology/documentary-standards-...
[15] Kuznetsov, B.N.; Chesnokov, N.V.; Mikova, N.M.; Zaikovskii, V.I.; Drozdov, V.A.; Savos'kin, M.V.; Yaroshenko, A.M.; Lyubchik, S.B. Texture and Catalytic Properties of Palladium Supported on thermally expanded natural graphite. React. Kinet. Catal. Lett. 2003, 80, 345–350. https://doi.org/10.1023/B:REAC.0000006144.22936.ac
[16] Kuznetsov, B.N.; Chesnokov, N.V.; Mikova, N.M.; Drozdov, V.A.; Shendrik, T.G.; Lyubchik, S.B.; Fonseca, I.M. Properties of Palladium Catalysts on Carbon Supports Prepared from Chemically Modified and Activated Anthracites. React. Kinet. Catal. Lett. 2004, 83, 361–367. https://doi.org/10.1023/B:REAC.0000046098.90626.56
[17] Shylo, A.; Doroshkevich, A.; Lyubchyk, A.; Bacherikov, Y.; Balasoiu, M.; Konstantinova, T. Electrophysical Properties of Hydrated Porous Dispersed System Based on Zirconia Nanopowders. Appl. Nanosci. Switz. 2020, 10, 4395–4402. https://doi.org/10.1007/s13204-020-01471-2
[18] Babak, V.P.; Scherbak, L.M.; Kuts, Y.V.; Zaporozhets, A.O. Information and Measurement Technologies for Solving Problems of Energy Informatics. CEUR Workshop Proceed. 2021, 3039, 24–31. https://ssrn.com/abstract=3987938
[19] Jorge, M.; Lamia, N.; Rodrigues, A.E. Molecular Simulation of Propane/Propylene Separation on the Metal-Organic Framework CuBTC. Colloids Surf., A 2010, 357, 27–34. https://doi.org/10.1016/j.colsurfa.2009.08.025
[20] Fischer, M.; Gomes, J.R.; Fröba, M.; Jorge, M. Modeling Adsorption in Metal-Organic Frameworks with Open Metal Sites: Propane/Propylene Separations. Langmuir 2012, 28, 8537–8549. https://doi.org/10.1021/la301215y
[21] Abedini, H.; Shariati, A.; Khosravi-Nikou, M.R. Adsorption of Propane and Propylene on M-MOF-74 (M=Cu, Co): Equilibrium and Kinetic Study. Chem. Eng. Res. Des. 2020, 153, 96–106. https://doi.org/10.1016/j.cherd.2019.10.014
[22] Lan, T.; Li, L.; Chen, Y.; Wang, X.; Yang, J.; Li, J. Opportunities and Critical Factors of Porous Metal-Organic Frameworks for Industrial Light Olefins Separation. Mater. Chem. Front. 2020, 4, 1954–1984. https://doi.org/10.1039/D0QM00186D
[23] Lan, T.; Yu, B.; Liu, Y.; Ning, D.; Zhi, C.; Chen, Y.; Sun, L.B.; Cui, X.; Li, J.; Li, L. Two-Dimensional Anion-Pillared Metal-Organic Framework for Sieving Separation of Propylene from Propane with Ultrahigh Kinetic Performance. Inorg. Chem. 2025, 64, 5322–5330. https://doi.org/10.1021/acs.inorgchem.5c00602
[24] Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. https://doi.org/10.1021/acs.chemrev.2c00140
[25] Martins, V.F.; Ribeiro, A.M.; Plaza, M.G.; Santos, J.C.; Loureiro, J.M.; Ferreira, A.F.; Rodrigues, A.E. Gas-Phase Simulated Moving Bed: Propane/Propylene Separation on 13X Zeolite. J. Chromatogr. A 2015, 1423, 136–148. https://doi.org/10.1016/j.chroma.2015.10.038
[26] Suyetin, M. Exploring Propane/Propylene Separation through Molecular Dynamics Simulations of Flexible Metal-Organic Framework Models. 2023. https://doi.org/10.26434/chemrxiv-2023-cpr0c
[27] Fathi, S.; Rezaei, A.; Mohadesi, M.; Nazari, M. PSO-ANFIS and ANN Modeling of Propane/Propylene Separation Using Cu-BTC Adsorbent. J. Chem. Pet. Eng. 2019, 53, 191–201. http://doi.org/10.22059/JCHPE.2019.269113.1256
[28] Ma, X.; Williams, S.; Wei, X.; Kniep, J.; Lin, Y.S. Propylene/Propane Mixture Separation Characteristics and Stability of Carbon Molecular Sieve Membranes. Ind. Eng. Chem. Res. 2015, 54, 9824–9831. https://doi.org/10.1021/acs.iecr.5b02721
[29] Yuan, Y.F.; Wang, Y.S.; Zhang, X.L.; Li, W.C.; Hao, G.P.; Han, L.; Lu, A.H. Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane. Angew. Chem. Int. Ed. 2021, 60, 19063–19067. https://doi.org/10.1002/anie.202106523
[30] Xia, W.; Zhou, Z.; Sheng, L.; Chen, L.; Shen, F.; Zheng, F.; Zhang, Z.; Yang, Q.; Ren, Q.; Bao, Z. Bioinspired Recognition in Metal-Organic Frameworks Enabling Precise Sieving Separation of Fluorinated Propylene and Propane Mixtures. Nat. Commun. 2024, 15, 8716. https://doi.org/10.1038/s41467-024-53024-8
[31] Huang, X.; Martín-Calvo, A.; Mulder, M.J.; van Acht, S.C.; Gutiérrez-Sevillano, J.J.; García-Navarro, J.C.; Calero, S. Effect of Zeolitic Imidazolate Framework Topology on the Purification of Hydrogen from Coke Oven Gas. ACS Sustainable Chem. Eng. 2023, 11, 8020–8034. https://doi.org/10.1021/acssuschemeng.2c07006
[32] Wang, S.; Zhang, Y.; Tang, Y.; Wen, Y.; Lv, Z.; Liu, S.; Li, X.; Zhou, X. Propane-Selective Design of Zirconium-Based MOFs for Propylene Purification. Chem. Eng. Sci. 2020, 219, 115604. https://doi.org/10.1016/j.ces.2020.115604
[33] Xia, W.; Yang, Y.; Sheng, L.; Zhou, Z.; Chen, L.; Zhang, Z.; Zhang, Z.; Yang, Q.; Ren, Q.; Bao, Z. Temperature-Dependent Molecular Sieving of Fluorinated Propane/Propylene Mixtures by a Flexible-Robust Metal-Organic Framework. Sci. Adv. 2024, 10, eadj6473. https://doi.org/10.1126/sciadv.adj6473
[34] Zeng, H.; Xie, M.; Wang, T.; Wei, R.J.; Xie, X.J.; Zhao, Y.; Lu, W.; Li, D. Orthogonal-Array Dynamic Molecular Sieving of Propylene/Propane Mixtures. Nature 2021, 595, 542–548. https://doi.org/10.1038/s41586-021-03627-8
[35] Chen, F.; Huang, X.; Guo, K.; Yang, L.; Sun, H.; Xia, W.; Zhang, Z.; Yang, Q.; Yang, Y.; Zhao, D.; Ren, Q.; Bao, Z. Molecular Sieving of Propylene from Propane in Metal-Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS Appl. Mater. Interfaces 2022, 14, 30443–30453. https://doi.org/10.1021/acsami.2c09189
[36] Luna-Triguero, A.; Sławek, A.; Sánchez-de-Armas, R.; Gutiérrez-Sevillano, J.J.; Ania, C.O.; Parra, J.B.; Vicent-Luna, J.M.; Calero, S. π-Complexation for Olefin/Paraffin Separation Using Aluminosilicates. Chem. Eng. J. 2020, 380, 122482. https://doi.org/10.1016/j.cej.2019.122482
[37] Kim, A.R.; Yoon, T.U.; Kim, E.J.; Yoon, J.W.; Kim, S.Y.; Yoon, J.W.; Hwang, Y.K.; Chang, J.S.; Bae, Y.S. Facile Loading of Cu (I) in MIL-100 (Fe) through Redox-Active Fe (II) Sites and Remarkable Propylene/Propane Separation Performance. Chem. Eng. J. 2018, 331, 777–784. https://doi.org/10.1016/j.cej.2017.09.016
[38] Gao, J.; Cai, Y.; Qian, X.; Liu, P.; Wu, H.; Zhou, W.; Liu, D.X.; Li, L.; Lin, R.B.; Chen, B. A Microporous Hydrogen‐Bonded Organic Framework for the Efficient Capture and Purification of Propylene. Angew. Chem. Int. Ed. 2021, 60, 20400–20406. https://doi.org/10.1002/anie.202106665