Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Optimization and Modeling of Adsorption-Desorption Systems for Liquid-Phase Propane-Propylene Purification

Fazil Rahimli1, Nigar Mamedova1
Affiliation: 
1 Department of Petrochemical Technology and Industrial Ecology, Azerbaijan State Oil and Industry University, 34 Azadliq Ave., AZ1010 Baku, Republic of Azerbaijan rahimlifazil4@gmail.com
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf522.12 KB
Abstract: 
This study investigated the adsorption-desorption performance of three structured adsorbents, 3A-EPG, AZ-500, and SG-731, used in a layered fixed-bed configuration to remove contaminants from a liquid-phase feed mixture composed of 34.2% propane, 64.5% propylene, and 1.3% C4 hydrocarbons. The initial concentrations of impurities were 300 ppm H2O, 14 ppm RSH, 5 ppm H2S, and 18 ppm COS. All three adsorbents demonstrated high purification efficiency, reducing impurity concentrations to below 0.1 ppm. Thermodynamic analysis indicated that adsorption efficiency improved with increased pressure and decreased temperature, while higher flow rates marginally reduced performance due to shorter contact time.
References: 

[1] Redkina, A.; Konovalova, N.; Kravchenko, N.; Strelko, V. Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation. Chem. Chem. Technol. 2022, 16, 259–266. https://doi.org/10.23939/chcht16.02.259
[2] Pertko, O.; Voloshyna, Y.; Patrylak, L.; Yakovenko, A. Oxidative CO2 Dehydrogenation of Butane on Microspherical Zeolite-Containing Composites Based on Ukrainian Kaolin. Chem. Chem. Technol. 2025, 19, 455–462. https://doi.org/10.23939/chcht19.03.455
[3] Lyubchyk, S.I.; Lyubchyk, S.B.; Lyubchyk, A.I. Characterization of Adsorption Properties Inherent to Zirconia Dioxide for Different Positions of Yttrium in the ZrO2–Y2O3 Lattice. Semicond. Phys. Quantum Electron. Optoelectron. 2022, 25, 362–371.
[4] Seabra, R.; Dias, R.O.M.; Regufe, M.J.; Ribeiro, A.M.; Rodrigues, A.E.; Ferreira, A.F.P. Propane and Propylene Separation with Carbon Dioxide at Mild Temperatures by Gas-Phase Simulated Moving Bed in Binderfree Zeolite 13X. Ind. Eng. Chem. Res. 2023, 62, 12600–12612. https://doi.org/10.1021/acs.iecr.3c01601
[5] Cheng, L.S.; Wilson, S.T. Process for separating propylene from propane (U.S. Patent No. 6,293,999). U.S. Patent and Trademark Office, 2001.
[6] Hu, P.; Hu, J.; Liu, H.; Wang, H.; Zhou, J.; Krishna, R.; Ji, H. Quasi-Orthogonal Configuration of Propylene within a Scalable Metal-Organic Framework Enables its Purification from Quinary Propane Dehydrogenation Byproducts. ACS Cent. Sci. 2022, 8, 1159–1168. https://doi.org/10.1021/acscentsci.2c00554
[7] Lei, Y.; Yu, Z.; Wei, Z.; Liu, X.; Luo, H.; Chen, Y.; Liang, X.; Kontogeorgis, G.M. Energy-Efficient Separation of Propylene/Propane by Introducing a Tailor-Made Ionic Liquid Solvent. Fuel 2022, 326, 124930. https://doi.org/10.1016/j.fuel.2022.124930
[8] Su, Y.; Otake, K.; Zheng, J.J.; Wang, P.; Lin, Q.; Kitagawa, S.; Gu, C. Diffusion-Rate Sieving of Propylene and Propane Mixtures in a Cooperatively Dynamic Porous Crystal. Nat. Commun. 2024, 15, 2898. https://doi.org/10.1038/s41467-024-47268-7
[9] Li, L.; Xiang, F.; Li, Y.; Yang, Y.; Yuan, Z.; Chen, Y.; Yuan, F.; He, L.; Xiang, S.; Chen, B.; Zhang, Z. Optimizing Propylene/Propane Sieving Separation through gate-Pressure Control within a Flexible Organic Framework. Angew. Chem. Int. Ed. 2025, 64, e202419047. https://doi.org/10.1002/anie.202419047
[10] Yang, L.; Liu, Y.; Zheng, F.; Shen, F.; Liu, B.; Krishna, R.; Zhang, Z.; Yang, Q.; Ren, Q.; Bao, Z. Leveraging Diffusion Kinetics to Reverse Propane/Propylene Adsorption in Zeolitic Imidazolate Framework-8. ACS Nano 2024, 18, 3614–3626. https://doi.org/10.1021/acsnano.3c11385
[11] Khraisheh, M.; AlMomani, F.; Walker, G. High Purity/Recovery Separation of Propylene from Propyne Using Anion Pillared Metal-Organic Framework: Application of Vacuum Swing Adsorption (VSA). Energies 2021, 14, 609. https://doi.org/10.3390/en14030609
[12] Guo, M.; Kanezashi, M. Recent Progress in a Membrane-Based Technique for Propylene/Propane Separation. Membranes 2021, 11, 310. https://doi.org/10.3390/membranes11050310
[13] Xie, F.; Wang, H.; Li, J. Microporous Metal-Organic Frameworks for the Purification of Propylene. J. Mater. Chem. A 2023, 11, 12425–12433. https://doi.org/10.1039/D2TA09326J
[14] National Institute of Standards and Technology (NIST). Resources: Calibration Procedures. 2025. https://www.nist.gov/pml/owm/laboratory-metrology/documentary-standards-...
[15] Kuznetsov, B.N.; Chesnokov, N.V.; Mikova, N.M.; Zaikovskii, V.I.; Drozdov, V.A.; Savos'kin, M.V.; Yaroshenko, A.M.; Lyubchik, S.B. Texture and Catalytic Properties of Palladium Supported on thermally expanded natural graphite. React. Kinet. Catal. Lett. 2003, 80, 345–350. https://doi.org/10.1023/B:REAC.0000006144.22936.ac
[16] Kuznetsov, B.N.; Chesnokov, N.V.; Mikova, N.M.; Drozdov, V.A.; Shendrik, T.G.; Lyubchik, S.B.; Fonseca, I.M. Properties of Palladium Catalysts on Carbon Supports Prepared from Chemically Modified and Activated Anthracites. React. Kinet. Catal. Lett. 2004, 83, 361–367. https://doi.org/10.1023/B:REAC.0000046098.90626.56
[17] Shylo, A.; Doroshkevich, A.; Lyubchyk, A.; Bacherikov, Y.; Balasoiu, M.; Konstantinova, T. Electrophysical Properties of Hydrated Porous Dispersed System Based on Zirconia Nanopowders. Appl. Nanosci. Switz. 2020, 10, 4395–4402. https://doi.org/10.1007/s13204-020-01471-2
[18] Babak, V.P.; Scherbak, L.M.; Kuts, Y.V.; Zaporozhets, A.O. Information and Measurement Technologies for Solving Problems of Energy Informatics. CEUR Workshop Proceed. 2021, 3039, 24–31. https://ssrn.com/abstract=3987938
[19] Jorge, M.; Lamia, N.; Rodrigues, A.E. Molecular Simulation of Propane/Propylene Separation on the Metal-Organic Framework CuBTC. Colloids Surf., A 2010, 357, 27–34. https://doi.org/10.1016/j.colsurfa.2009.08.025
[20] Fischer, M.; Gomes, J.R.; Fröba, M.; Jorge, M. Modeling Adsorption in Metal-Organic Frameworks with Open Metal Sites: Propane/Propylene Separations. Langmuir 2012, 28, 8537–8549. https://doi.org/10.1021/la301215y
[21] Abedini, H.; Shariati, A.; Khosravi-Nikou, M.R. Adsorption of Propane and Propylene on M-MOF-74 (M=Cu, Co): Equilibrium and Kinetic Study. Chem. Eng. Res. Des. 2020, 153, 96–106. https://doi.org/10.1016/j.cherd.2019.10.014
[22] Lan, T.; Li, L.; Chen, Y.; Wang, X.; Yang, J.; Li, J. Opportunities and Critical Factors of Porous Metal-Organic Frameworks for Industrial Light Olefins Separation. Mater. Chem. Front. 2020, 4, 1954–1984. https://doi.org/10.1039/D0QM00186D
[23] Lan, T.; Yu, B.; Liu, Y.; Ning, D.; Zhi, C.; Chen, Y.; Sun, L.B.; Cui, X.; Li, J.; Li, L. Two-Dimensional Anion-Pillared Metal-Organic Framework for Sieving Separation of Propylene from Propane with Ultrahigh Kinetic Performance. Inorg. Chem. 2025, 64, 5322–5330. https://doi.org/10.1021/acs.inorgchem.5c00602
[24] Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. https://doi.org/10.1021/acs.chemrev.2c00140
[25] Martins, V.F.; Ribeiro, A.M.; Plaza, M.G.; Santos, J.C.; Loureiro, J.M.; Ferreira, A.F.; Rodrigues, A.E. Gas-Phase Simulated Moving Bed: Propane/Propylene Separation on 13X Zeolite. J. Chromatogr. A 2015, 1423, 136–148. https://doi.org/10.1016/j.chroma.2015.10.038
[26] Suyetin, M. Exploring Propane/Propylene Separation through Molecular Dynamics Simulations of Flexible Metal-Organic Framework Models. 2023. https://doi.org/10.26434/chemrxiv-2023-cpr0c
[27] Fathi, S.; Rezaei, A.; Mohadesi, M.; Nazari, M. PSO-ANFIS and ANN Modeling of Propane/Propylene Separation Using Cu-BTC Adsorbent. J. Chem. Pet. Eng. 2019, 53, 191–201. http://doi.org/10.22059/JCHPE.2019.269113.1256
[28] Ma, X.; Williams, S.; Wei, X.; Kniep, J.; Lin, Y.S. Propylene/Propane Mixture Separation Characteristics and Stability of Carbon Molecular Sieve Membranes. Ind. Eng. Chem. Res. 2015, 54, 9824–9831. https://doi.org/10.1021/acs.iecr.5b02721
[29] Yuan, Y.F.; Wang, Y.S.; Zhang, X.L.; Li, W.C.; Hao, G.P.; Han, L.; Lu, A.H. Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane. Angew. Chem. Int. Ed. 2021, 60, 19063–19067. https://doi.org/10.1002/anie.202106523
[30] Xia, W.; Zhou, Z.; Sheng, L.; Chen, L.; Shen, F.; Zheng, F.; Zhang, Z.; Yang, Q.; Ren, Q.; Bao, Z. Bioinspired Recognition in Metal-Organic Frameworks Enabling Precise Sieving Separation of Fluorinated Propylene and Propane Mixtures. Nat. Commun. 2024, 15, 8716. https://doi.org/10.1038/s41467-024-53024-8
[31] Huang, X.; Martín-Calvo, A.; Mulder, M.J.; van Acht, S.C.; Gutiérrez-Sevillano, J.J.; García-Navarro, J.C.; Calero, S. Effect of Zeolitic Imidazolate Framework Topology on the Purification of Hydrogen from Coke Oven Gas. ACS Sustainable Chem. Eng. 2023, 11, 8020–8034. https://doi.org/10.1021/acssuschemeng.2c07006
[32] Wang, S.; Zhang, Y.; Tang, Y.; Wen, Y.; Lv, Z.; Liu, S.; Li, X.; Zhou, X. Propane-Selective Design of Zirconium-Based MOFs for Propylene Purification. Chem. Eng. Sci. 2020, 219, 115604. https://doi.org/10.1016/j.ces.2020.115604
[33] Xia, W.; Yang, Y.; Sheng, L.; Zhou, Z.; Chen, L.; Zhang, Z.; Zhang, Z.; Yang, Q.; Ren, Q.; Bao, Z. Temperature-Dependent Molecular Sieving of Fluorinated Propane/Propylene Mixtures by a Flexible-Robust Metal-Organic Framework. Sci. Adv. 2024, 10, eadj6473. https://doi.org/10.1126/sciadv.adj6473
[34] Zeng, H.; Xie, M.; Wang, T.; Wei, R.J.; Xie, X.J.; Zhao, Y.; Lu, W.; Li, D. Orthogonal-Array Dynamic Molecular Sieving of Propylene/Propane Mixtures. Nature 2021, 595, 542–548. https://doi.org/10.1038/s41586-021-03627-8
[35] Chen, F.; Huang, X.; Guo, K.; Yang, L.; Sun, H.; Xia, W.; Zhang, Z.; Yang, Q.; Yang, Y.; Zhao, D.; Ren, Q.; Bao, Z. Molecular Sieving of Propylene from Propane in Metal-Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS Appl. Mater. Interfaces 2022, 14, 30443–30453. https://doi.org/10.1021/acsami.2c09189
[36] Luna-Triguero, A.; Sławek, A.; Sánchez-de-Armas, R.; Gutiérrez-Sevillano, J.J.; Ania, C.O.; Parra, J.B.; Vicent-Luna, J.M.; Calero, S. π-Complexation for Olefin/Paraffin Separation Using Aluminosilicates. Chem. Eng. J. 2020, 380, 122482. https://doi.org/10.1016/j.cej.2019.122482
[37] Kim, A.R.; Yoon, T.U.; Kim, E.J.; Yoon, J.W.; Kim, S.Y.; Yoon, J.W.; Hwang, Y.K.; Chang, J.S.; Bae, Y.S. Facile Loading of Cu (I) in MIL-100 (Fe) through Redox-Active Fe (II) Sites and Remarkable Propylene/Propane Separation Performance. Chem. Eng. J. 2018, 331, 777–784. https://doi.org/10.1016/j.cej.2017.09.016
[38] Gao, J.; Cai, Y.; Qian, X.; Liu, P.; Wu, H.; Zhou, W.; Liu, D.X.; Li, L.; Lin, R.B.; Chen, B. A Microporous Hydrogen‐Bonded Organic Framework for the Efficient Capture and Purification of Propylene. Angew. Chem. Int. Ed. 2021, 60, 20400–20406. https://doi.org/10.1002/anie.202106665