Study on Wheat and Oat Bran Extracts and Their Antioxidant Properties

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Olha Fedoryshyn1, Olena Yaremkevych1, Roksolana Konechna1, Lilianna Oliynyk1, Ananiy Kohut1
Affiliation: 
1 Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine olha.m.fedoryshyn@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.03.529
AttachmentSize
PDF icon full_text.pdf309.45 KB
Abstract: 
The article presents the results of a study on aqueous and aqueous-ethanolic extracts derived from the cell wall material of oat and wheat bran, focusing on their content of phenolic compounds, flavonoids, and amino acids. The total phenolic content was assessed spectrophotometrically using the Folin–Ciocalteu method, while the total flavonoid content was determined via an aluminum chloride colorimetric assay. Gallic acid, ferulic acid, and quercetin were also identified in the samples using thin-layer chromatography. The antioxidant activity of the extracts was evaluated using rat liver hepatocytes under in vitro conditions of free radical oxidation. The results indicated that the aqueous-ethanolic extracts of wheat and oat bran did not significantly reduce lipid peroxidation or oxidative protein modification. However, wheat bran extracts exhibited higher antioxidant activity than those from oat bran.
References: 

[1] Praphasawat, R; Palipoch, S; Suwannalert, P; Payuhakrit, W; Kunsorn, P; Laovitthayanggoon, S; Thakaew, S; Munkong, N; Klajing, W. Red Rice Bran Extract Suppresses Colon Cancer Cells via Apoptosis Induction/Cell Cycle Arrest and Exerts Antimutagenic Activity. Exp. Oncol. 2023, 45, 220-230. https://doi.org/10.15407/exp-oncology.2023.02.220
https://doi.org/10.15407/exp-oncology.2023.02.220

[2] Reddy, S.S.; Krishnan, C. Production of Prebiotics and Antioxidants as Health Food Supplements from Lignocellulosic Materials Using Multienzymatic Hydrolysis. Int. J. Chem. Sci. 2010, 8, S535-S549.

[3] Kapreliants, L.; Zhurlova, O. Technology of Wheat and Rye Bran Biotransformation into Functional Ingredients. Int. Food Res. J. 2017, 24, 1975-1979. http://www.ifrj.upm.edu.my/volume-24-2017.html

[4] Grande, S.; Bogani, P.; de Saizieu A.; Schueler, G.; Galli, C.; Visioli, F. Vasomodulating Potential of Mediterranean Wild Plant Extracts. J. Agric. Food Chem. 2004, 52, 5021-5026. https://doi.org/10.1021/jf049436e
https://doi.org/10.1021/jf049436e

[5] Yu, L.; Perret, J.; Harris, M.; Wilson, J.; Haley, S. Antioxidant Properties of Bran Extracts from "Akron" Wheat Grown at Different Locations. J. Agric. Food Chem. 2003, 51, 1566-1570. https://doi.org/10.1021/jf020950z
https://doi.org/10.1021/jf020950z

[6] Georgé, S.; Brat, P.; Alter, P.; Amiot, M.J. Rapid Determination of Polyphenols and Vitamin C in Plant-Derived Products. J. Agric. Food Chem. 2005, 53, 1370-1373. https://doi.org/10.1021/jf048396b
https://doi.org/10.1021/jf048396b

[7] Elhaty, I.A.; Zeyoudi, S.A. A. Comparative Study of the Phenolic and Flavonoids Contents, and Antioxidant Activity of Ziziphus Mauritiana's Leaves, Ripe and Unripe Fruit Extracts from UAE. Chem. Chem. Technol. 2024, 18, 363-371. https://doi.org/10.23939/chcht18.03.363
https://doi.org/10.23939/chcht18.03.363

[8] Asma, F.; Salah Eddine, H.; Yassmine, C.; Hanane, Z. Phytochemical Screening, Antibacterial and Antioxidant Activities of Ocimum basilicum L. Cultivated in Biskra, Algeria. Chem. Chem. Technol. 2023, 17, 397-406. https://doi.org/10.23939/chcht17.02.397
https://doi.org/10.23939/chcht17.02.397

[9] Wijesooriya, S.S.; Pandithavidana, D.R. Investigation and Comparison of Antioxidant Potential of Catechins Present in Green Tea: DFT Study. Chem. Chem. Technol. 2022, 16, 591-599. https://doi.org/10.23939/chcht16.04.591
https://doi.org/10.23939/chcht16.04.591

[10] Rebolleda, S.; González-San José, M.L.; Sanz, M.T.; Beltrán, S.; Solaesa, Á.G. Bioactive Compounds of a Wheat Bran Oily Extract Obtained with Supercritical Carbon Dioxide. Foods 2020, 9, 625. https://doi.org/10.3390/foods9050625
https://doi.org/10.3390/foods9050625

[11] Prebiotics: Development and Application. Gibson, G.R., Rastall, R.A., Eds.; John Wiley & Sons, Ltd., 2006. https://doi.org/10.1002/9780470023150
https://doi.org/10.1002/9780470023150

[12] Dwivedi, S.; Sahrawat, K.; Puppala, N.; Ortiz, R. Plant Prebiotics and Human Health: Biotechnology to Breed Prebioticrich Nutritious Food Crops. Electron. J. Biotechnol. 2014, 17, 238-245. https://doi.org/10.1016/j.ejbt.2014.07.004.
https://doi.org/10.1016/j.ejbt.2014.07.004

[13] Singh, R.D.; Banerjee, J.; Arora, A. Prebiotic Potential of Oligosaccharides: A Focus on Xylan Derived Oligosaccharides. Bioact. Carbohydr. Dietary Fibre 2015, 5, 19-30. https://doi.org/10.1016/j.bcdf.2014.11.003
https://doi.org/10.1016/j.bcdf.2014.11.003

[14] Collins, H.M.; Burton, R.A.; Topping, D.L.; Liao, M.-L.; Bacic, A.; Fincher, G.B. Review: Variability in Fine Structures of Noncellulosic Cell Wall Polysaccharides from Cereal Grains: Potential Importance in Human Health and Nutrition. Cereal Chem. 2010, 87, 272-282. https://doi.org/10.1094/CCHEM-87-4-0272
https://doi.org/10.1094/CCHEM-87-4-0272

[15] Chlopicka, J.; Pasko, P.; Gorinstein, S.; Jedryas, A.; Zagrodzki, P. Total Phenolic and Total Flavonoid Content, Antioxidant Activity and Sensory Evaluation of Pseudocereal Breads. LWT Food Sci. Technol. 2012, 46, 548-555. https://doi.org/10.1016/j.lwt.2011.11.009
https://doi.org/10.1016/j.lwt.2011.11.009

[16] Balasubashini, M.S.; Rukkumani, R.; Viswanathan, P.; Menon, V.P. Ferulic Acid Alleviates Lipid Peroxidation in Diabetic Rats. Phytother. Res. 2004, 18, 310-314. https://doi.org/10.1002/ptr.1440
https://doi.org/10.1002/ptr.1440

[17] Andersson, A.A.M.; Lampi A.-M.; Nyström, L.; Piironen, V.; Li, L.; Ward, J.L.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Boros, D.; Fraś, A.; et al. Phytochemical and Dietary Fiber Components in Barley Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9767-9776. https://doi.org/10.1021/jf802037f
https://doi.org/10.1021/jf802037f

[18] Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318-1320. https://doi.org/10.1002/anie.200603817
https://doi.org/10.1002/anie.200603817

[19] Sharma, O.P.; Bhat, T.K.; Singh, B. Thin-Layer Chromatography of Gallic Acid, Methyl Gallate, Pyrogallol, Phloroglucinol, Catechol, Resorcinol, Hydroquinone, Catechin, Epicatechin, Cinnamic Acid, p-Coumaric Acid, Ferulic Acid and Tannic Acid. J. Chromatogr. A 1998, 822, 167-171. https://doi.org/10.1016/S0021-9673(98)00490-7
https://doi.org/10.1016/S0021-9673(98)00490-7

[20] Borges, M.F.M.; Pinto, M.A.M.M. Separation of the Diastereoisomers of Ethyl Esters of Caffeic, Ferulic, and Isoferulic Acids by Thin-Layer and High Performance Liquid Chromatography. J. Liq. Chromatogr. 1994, 17, 1125-1139. https://doi.org/10.1080/10826079408013390
https://doi.org/10.1080/10826079408013390

[21] Sheng, Y.X.; Li, L.; Wang, Q.; Guo, H.Z.; Guo, D.A. Simultaneous Determination of Gallic Acid, Albiflorin, Paeoniflorin, Ferulic Acid and Benzoic Acid in Si-Wu Decoction by High-Performance Liquid Chromatography DAD Method. J. Pharm. Biomed. Anal. 2005, 37, 805-810. https://doi.org/10.1016/j.jpba.2004.11.002
https://doi.org/10.1016/j.jpba.2004.11.002

[22] Luo, L.; Wang, X.; Li, Q.; Ding, Y.; Jia, J.; Deng, D. Voltammetric Determination of Ferulic Acid by Didodecyldimethyl-Ammonium Bromide/Nafion Composite Film-Modified Carbon Paste Electrode. Anal. Sci. 2010, 26, 907-911. https://doi.org/10.2116/analsci.26.907
https://doi.org/10.2116/analsci.26.907

[23] Li, L.-J.; Yu, L.-B.; Chen, Q.-F.; Cheng, H.; Wu, F.-M.; Wu, J.-L.; Kong, H.-X. Determination of Ferulic Acid Based on L-Cysteine Self-Assembled Modified Gold Electrode Coupling Irreversible Biamperometry. Chin. J. Anal. Chem. 2007, 35, 933-937. https://doi.org/10.1016/S1872-2040(07)60060-7
https://doi.org/10.1016/S1872-2040(07)60060-7

[24] Hamada, V.; Krvavych, A.; Konechna, R.; Mylyanych, А.; Buchkevych, I.; Holubieva, T.; Lubenets, V. Development of Technology for Obtaining Herbal Extracts of Adonis Vernalis. Lett. Appl. NanoBioSci. 2023, 12, 78. https://doi.org/10.33263/LIANBS123.078
https://doi.org/10.33263/LIANBS123.078

[25] Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of Freezing and Storage on the Phenolics, Ellagitannins, Flavonoids, and Antioxidant Capacity of Red Raspberries. J. Agric. Food Chem. 2002, 50, 5197-5201. https://doi.org/10.1021/jf020141f
https://doi.org/10.1021/jf020141f

[26] Mullen, W.; McGinn, J.; Lean, M.E.J.; MacLean, M.R.; Gardner, P.; Duthie, G.G.; Yokota, T.; Crozier, A. Ellagitannins, Flavonoids, and Other Phenolics in Red Raspberries and Their Contribution to Antioxidant Capacity and Vasorelaxation Properties. J. Agric. Food Chem. 2002, 50, 5191-5196. https://doi.org/10.1021/jf020140n
https://doi.org/10.1021/jf020140n

[27] Kaur, R.; Ahluwalia, P.; Sachdev, P.A.; Kaur, A. Development of Gluten-Free Cereal Bar for Gluten Intolerant Population by Using Quinoa as Major Ingredient. J. Food Sci. Technol. 2018, 55, 3584-3591. https://doi.org/10.1007/s13197-018-3284-x.
https://doi.org/10.1007/s13197-018-3284-x

[28] Kaprelyants, L.; Zhurlova, O. Biotechnological Approaches for the Production of Functional Foods and Supplements from Cereal Raw Materials. Food Sci. Technol. 2014, 2, 15-19. https://doi.org/10.15673/2073-8684.27/2014.29697

[29] Dias, F.S.; David, J.M.; David, J.P. Determination of Phenolic Acids and Quercetin in Brazilian Red Wines from Vale do São Francisco Region Using Liquid-Liquid Ultrasound-Assisted Extraction and HPLC-DAD-MS. J. Braz. Chem. Soc. 2016, 27, 1055-1059. https://doi.org/10.5935/0103-5053.20150363
https://doi.org/10.5935/0103-5053.20150363

[30] Kaprelyants, L.; Yegorova, A.; Trufkati, L.; Pozhitkova, L. Functional Foods: Prospectots in Ukraine. Food Sci. Technol. 2019, 13, 15-23. https://doi.org/10.15673/fst.v13i2.1382
https://doi.org/10.15673/fst.v13i2.1382

[31] Alves, G.H.; Ferreira, C.D.; Vivian, P.G.; Monks, J.L.F.; Elias, M.C.; Vanier, N.L.; de Oliveira, M. The Revisited Levels of Free and Bound Phenolics in Rice: Effects of the Extraction Procedure. Food Chem. 2016, 208, 116-123. https://doi.org/10.1016/j.foodchem.2016.03.107
https://doi.org/10.1016/j.foodchem.2016.03.107

[32] Perales-Sánchez, J.X.K.; Reyes-Moreno, C.; Gómez-Favela, M.A.; Milán-Carrillo, J.; Cuevas-Rodríguez, E.O.; Valdez-Ortiz, A.; Gutiérrez-Dorado, R. Increasing the Antioxidant Activity, Total Phenolic and Flavonoid Contents by Optimizing the Germination Conditions of Amaranth Seeds. Plant Foods Hum. Nutr. 2014, 69, 196-202. https://doi.org/10.1007/s11130-014-0430-0
https://doi.org/10.1007/s11130-014-0430-0

[33] Hole, A.S.; Grimmer, S.; Jensen, M.R.; Sahistrøm, S. Synergistic and Suppressive Effects of Dietary Phenolic Acids and Other Phytochemicals from Cereal Extracts on Nuclear Factor Kappa B Activity. Food Chem. 2012, 133, 969-977. https://doi.org/10.1016/j.foodchem.2012.02.017
https://doi.org/10.1016/j.foodchem.2012.02.017

[34] Bazavluk, Y.; Vanko, R.; Konechnyi, Y.; Konechna, R. Obtaining and Research of Callus Biomass of Some Plants of the Family Ranunсulaсаe. Herba Polonica 2023, 69, 45-57. https://doi.org/10.5604/01.3001.0053.9652
https://doi.org/10.5604/01.3001.0053.9652

[35] Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical Screening and Extraction: A Review. Internationale Pharmaceutica Sciencia 2011, 1, 98 106.

[36] Blyznyuk, N.; Prokopenko, Yu.; Georgiyants, V. Development of Methods for Determination of Phenolic Acids and Flavonoids in Capsules Containing Corylus avellana L. Dry Extract. ScienceRise: Pharmaceutical Science 2016, 2, 18-22. https://doi.org/10.15587/2313-8416.2016.61495
https://doi.org/10.15587/2313-8416.2016.61495

[37] Vitalini, S.; Beretta, G.; Iriti, M.; Orsenigo, S.; Basilico, N.; Dall'Acqua, S.; Iorizzi, M.; Fico, G. Phenolic Compounds from Achillea millefolium L. and Their Bioactivity. Acta Biochim. Pol. 2011, 58, 203-219. https://doi.org/10.18388/abp.2011_2266
https://doi.org/10.18388/abp.2011_2266

[38] Karpіuk, V.R. Research on the Development of a Complex Extract Based on Plants of the Ranunculaceae Family. Chemistry, Technology and Application of Substances 2022, 5, 94-99. https://doi.org/10.23939/ctas2022.02.094
https://doi.org/10.23939/ctas2022.02.094

[39] Tee-ngam, P.; Nunant, N.; Rattanarat, P.; Siangproh, W.; Chailapakul, O. Simple and Rapid Determination of Ferulic Acid Levels in Food and Cosmetic Samples Using Paper-Based Platforms. Sensors 2013, 13, 13039-13053. https://doi.org/10.3390/s131013039
https://doi.org/10.3390/s131013039

[40] Stanek, N.; Jasicka-Misiak, I. HPTLC Phenolic Profiles as Useful Tools for the Authentication of Honey. Food Anal. Methods 2018, 11, 2979-2989. https://doi.org/10.1007/s12161-018-1281-3
https://doi.org/10.1007/s12161-018-1281-3

[41] Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296-302. https://doi.org/10.1016/j.jfda.2013.11.001
https://doi.org/10.1016/j.jfda.2013.11.001

[42] Karpiuk, V.; Konechnyi, Y.; Yaremkevych, O.; Karpiuk, I.; Mylyanych, A.; Krvavych, A.; Konechna, R. Study of the Content of Phenolic Compounds, Antimicrobial and Antioxidant Properties of the Herb Caltha palustris. Res. J. Pharm. Technol. 2024, 17, 5673-5679. https://doi.org/10.52711/0974-360X.2024.00864
https://doi.org/10.52711/0974-360X.2024.00864

[43] Zarivna, N.O.; Horlachuk, N.V. Vyznachennia kilkisnoho vmistu aminokyslot u ridkomu ekstrakti chebretsiu povzuchoho, vybir kryteriiv pryjniatnosti. Medychna ta klinichna khimia 2022, 1, 77-80. https://doi.org/10.11603/mcch.2410-681X.2022.i1.13041
https://doi.org/10.11603/mcch.2410-681X.2022.i1.13041

[44] Lushchak, V.I.; Bahniukova, T.V.; Luzhna, L.I. Pokaznyky oksydatyvnoho stresu. 2. Peroksydy lipidiv. Ukr. Biokhim. Zh. 2006, 78, 113-119. (in Ukrainian)

[45] Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
https://doi.org/10.1016/S0021-9258(19)52451-6

[46] Morgan, G.A.; Leech, N.L.; Gloeckner, G.W.; Barrett, K.C. IBM SPSS for Introductory Statistics. Use and Interpretation, 4th ed.; Taylor & Francis Group, 2012.
https://doi.org/10.4324/9780203127315