Study on the Technical Lignin Effect on the Road Bitumen Properties

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Taras Chipko1, Myroslava Donchenko1, Yuriy Prysiazhnyi1, Roman Mnykh1, Iryna Pochapska1, Serhiy Pyshyev1
Affiliation: 
1 Lviv Polytechnic National University, 12 S. Bandery St., 79013 Lviv, Ukraine myroslava.i.donchenko@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.02.395
AttachmentSize
PDF icon full_text.pdf552.96 KB
Abstract: 
The effect of technical lignin on the characteristics of road bitumen obtained by oxidation of petroleum residues (oxidized bitumen) was examined. Two samples of hydrolysis-type technical lignin, obtained as a by-product of the production of feed yeast, were used. The first sample was technical lignin purified by sieving to remove unprocessed plant material. The second sample was technical lignin, purified by sieving to remove unprocessed plant material and flotation enrichment to remove inorganic components. The effect of adding two samples of technical lignin in different amounts on the main performance characteristics of road bitumen was analyzed. It was concluded that it is advisable to use technical lignin as a relatively inexpensive substitute for much more expensive road oil bitumen. It was also concluded that flotation beneficiation is effective as a method of increasing the purity of technical lignin.
References: 

[1] Leal Silva, J.F.; Nakasu, P.; Costa, A.C.D.; Maciel Filho, R.; Rabelo, S.C. Techno-Economic Analysis of the Production of 2G Ethanol and Technical Lignin via a Protic Ionic Liquid Pretreatment of Sugarcane Bagasse. Ind. Crops Prod. 2022, 189, 115788. https://doi.org/10.1016/j.indcrop.2022.115788
https://doi.org/10.1016/j.indcrop.2022.115788

[2] Schwaighofer, M.: Königsberger, M.: Zelaya-Lainez, L.; Lukacevic, M.; Serna-Loaiza, S.; Harasek, M.; Füssl, J. The Viscoelastic Behavior of Lignin: Quantification Through Nanoindentation Relaxation Testing on Hot-Pressed Technical Lignin Samples from Various Origins. Mech. Mater. 2024, 188, 104864. https://doi.org/10.1016/j.mechmat.2023.104864
https://doi.org/10.1016/j.mechmat.2023.104864

[3] Jeffri, N.I.; Rawi, N.F.M.; Kassim, M.H.B.M.; Abdullah, C.K. Unlocking the Potential: Evolving Role of Technical Lignin in Diverse Applications and Overcoming Challenges. Int. J. Biol. Macromol. 2024, 274, 133506. https://doi.org/10.1016/j.ijbiomac.2024.133506
https://doi.org/10.1016/j.ijbiomac.2024.133506

[4] Alam, M.M.; Greco, A.; Rajabimashhadi, Z.; Corcione, C. Efficient and Environmentally Friendly Techniques for Extracting Lignin from Lignocellulose Biomass and Subsequent Uses: A Review. Clean. Mater. 2024, 13, 100253. https://doi.org/10.1016/j.clema.2024.100253
https://doi.org/10.1016/j.clema.2024.100253

[5] Pandit, S.; Sharma, P.; Prakash, A.; Lal, B.; Bhuyan, R.; Ahmad, I.; Kuila, A. A Comprehensive Review on Technical Lignin, Lignin Hydrogels, Properties, Preparation, Applications & Challenges in Lab to Market Transition. Ind. Crop. Prod. 2024, 211, 118262. https://doi.org/10.1016/j.indcrop.2024.118262
https://doi.org/10.1016/j.indcrop.2024.118262

[6] Kazzaz, A.E.; Fatehi, P. Technical Lignin and its Potential Modification Routes: A Mini-Review. Ind. Crop. Prod. 2020, 154, 112732. https://doi.org/10.1016/j.indcrop.2020.112732
https://doi.org/10.1016/j.indcrop.2020.112732

[7] Soltanian, S.; Aghbashlo, M.; Almasi, F.; Hosseinzadeh-Bandbafha, H.; Nizami, A.-S.; Ok, Y.S.; Lam, S.S.; Tabatabaei, M. A Critical Review of the Effects of Pretreatment Methods on the Exergetic Aspects of Lignocellulosic Biofuels. Energy Convers. Manag. 2020, 212, 112792. https://doi.org/10.1016/j.enconman.2020.112792
https://doi.org/10.1016/j.enconman.2020.112792

[8] Gujjala, L.K.S.; Kim, J.; Won, W. Technical Lignin to Hydrogels: An Eclectic Review on Suitability, Synthesis, Applications, Challenges and Future Prospects. J. Clean. Prod. 2022, 363, 132585. https://doi.org/10.1016/j.jclepro.2022.132585
https://doi.org/10.1016/j.jclepro.2022.132585

[9] Wang, C.; Kelley, S.S.; Venditti, R.A. 2016. Lignin‐Based Thermoplastic Materials. ChemSusChem. 2016, 9, 770-783. https://doi.org/10.1002/cssc.201501531
https://doi.org/10.1002/cssc.201501531

[10] Lange, H.; Decina, S.; Crestini, C. Oxidative Upgrade of Lignin-Recent Routes Reviewed. Eur. Polym. J. 2013, 49, 1151-1173. https://doi.org/10.1016/j.eurpolymj.2013.03.002
https://doi.org/10.1016/j.eurpolymj.2013.03.002

[11] Tribot, A.; Amer, G.; Alio, M.A.; de Baynast, H.; Delattre, C.; Pons, A.; Mathias, J.D.; Callois, J.M.; Vial, C.; Michaud, P.; et al. Wood-Lignin: Supply, Extraction Processes and Use as Bio-Based Material. Eur. Polym. J. 2019, 112, 228-240. https://doi.org/10.1016/j.eurpolymj.2019.01.007
https://doi.org/10.1016/j.eurpolymj.2019.01.007

[12] Vishtal, A.G.; Kraslawski, A. Challenges in Industrial Applications of Technical Lignins. Bioresour. 2011, 6, 3547-3568. http://dx.doi.org/10.15376/biores.6.3.3547-3568
https://doi.org/10.15376/biores.6.3.3547-3568

[13] Wang, S.; Shen, Q.; Su, S.; Lin, J.; Song, G. The Temptation from Homogeneous Linear Catechyl Lignin. Trends Chem. 2022, 4, 948-961. https://doi.org/10.1016/j.trechm.2022.07.008
https://doi.org/10.1016/j.trechm.2022.07.008

[14] Jin, Y.; Lin, J.; Cheng, Y.; Lu, C. Lignin-Based High-Performance Fibers by Textile Spinning Techniques. Materials 2021, 14, 3378. https://doi.org/10.3390/ma14123378
https://doi.org/10.3390/ma14123378

[15] Sanchez, L.M.; Hopkins, A.K.; Espinosa, E.; Larraneta, E.; Malinova, D.; McShane, A.N.; Domínguez-Robles, J.; Rodríguez, A. Antioxidant Cellulose Nanofibers/Lignin-Based Aerogels: A Potential Material for Biomedical Applications. Chem.Biol.Technol.Agric. 2023, 10, 72. https://doi.org/10.1186/s40538-023-00438-z
https://doi.org/10.1186/s40538-023-00438-z

[16] Fazeli, M.; Mukherjee, S.; Baniasadi, H.; Abidnejad, R.; Mujtaba, M.; Lipponen, J.; Seppala, J.; Rojas, J.O. Lignin Beyond the status quo: Recent and Emerging Composite Applications. Green Chem. 2024, 26, 593-630. https://doi.org/10.1039/D3GC03154C
https://doi.org/10.1039/D3GC03154C

[17] Ren, S.; Liu, X.; Zhang, Y.; Lin, P.; Apostolidis, P.; Erkens, S.; Xu, J. Multi-Scale Characterization of Lignin Modified Bitumen Using Experimental and Molecular Dynamics Simulation Methods. Constr. Build. Mater. 2021, 287, 123058. https://doi.org/10.1016/j.conbuildmat.2021.123058
https://doi.org/10.1016/j.conbuildmat.2021.123058

[18] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211-220. https://doi.org/10.23939/chcht17.01.211
https://doi.org/10.23939/chcht17.01.211

[19] Prysiazhnyi, Y.; Grynyshyn, O.; Pyshyev, S.; Korchak, B.; Bratychak, M. Resins with Oxygen-Containing Functional Groups Obtained from Products of Fossil Fuels Processing: A Review of Achievements. Chem. Chem. Technol. 2023, 17, 574-591. https://doi.org/10.23939/chcht17.03.574
https://doi.org/10.23939/chcht17.03.574

[20] Wu, J.; Liu, Q.; Wang, C.; Wu, W.; Han, W. Investigation of Lignin as an Alternative Extender of Bitumen for Asphalt Pavements. J. Clean. Prod. 2021, 283, 124663. https://doi.org/10.1016/j.jclepro.2020.124663
https://doi.org/10.1016/j.jclepro.2020.124663

[21] He, B.; Xiao, Y.; Li, Y.; Fu, M.; Yu, J.; Zhu, L. Preparation and Characterization of Lignin Grafted Layered Double Hydroxides for Sustainable Service of Bitumen under Ultraviolet Light. J. Clean. Prod. 2022, 350, 131536. https://doi.org/10.1016/j.jclepro.2022.131536
https://doi.org/10.1016/j.jclepro.2022.131536

[22] Gaudenzi, E.; Cardone, F.; Lu, X.; Canestrari, F. Chemical and Rheological Analysis of Unaged and Aged Bio-Extended Binders Containing Lignin. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 947-963. https://doi.org/10.1016/j.jtte.2023.05.005
https://doi.org/10.1016/j.jtte.2023.05.005

[23] Norgbey, E.; Huang, J.; Hirsch, V.; Liu, W.J.; Wang, M.; Ripke, O.; Nkrumah, P.N. Unravelling the Efficient Use of Waste Lignin as a Bitumen Modifier for Sustainable Roads. Constr. Build. Mater. 2020, 230, 116957. https://doi.org/10.1016/j.conbuildmat.2019.116957
https://doi.org/10.1016/j.conbuildmat.2019.116957

[24] Donchenko, M.; Grynyshyn, O.; Demchuk Yu.; Topilnytskyy P.; Turba Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681-687. https://doi.org/10.23939/chcht17.03.681
https://doi.org/10.23939/chcht17.03.681

[25] Smyrnov, V. O.; Biletskiy, V. S. Flotatsiyni metody zbahachennya korysnykh kopalyn; Skhidnyy vydavnychyy dim: Donetsk, 2010. ISBN: 978-966-317-054-1.

[26] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.

[27] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.

[28] Pyshyev, S.; Miroshnichenko, D.; Chipko, T.; Donchenko, M.; Bogoyavlenska, O.; Lysenko, L.; Prysiazhnyi, Y. Use of Lignite Processing Products as Additives to Road Petroleum Bitumen. ChemEngineering 2024, 8, 27. https://doi.org/10.3390/chemengineering8020027
https://doi.org/10.3390/chemengineering8020027

[29] EN 13398:2018; Bitumen and Bituminous Binders. Determination of the Elasticity. iTeh: Newark, NJ, USA, 2019.

[30] DSTU 8787:2018; National Standard of Ukraine; Bitumen and Bituminous Binders. Determination of Adhesion with Crushed Stone. SE UkrNDNC: Kyiv, Ukraine, 2018.

[31] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air Part 1. RTFOT method, 2014.

[32] DSTU 9116:2021, Bitum ta bitumni viazhuchi. Bitumy dorozhni, modyfikovani polimeramy. SE UkrNDNC: Kyiv, Ukraine, 2021. P15.

[33] DSTU 9133:2021, Bitum ta bitumni viazhuchi. Bitumy dorozhni, modyfikovani kompleksom dobavok. SE UkrNDNC: Kyiv, Ukraine, 2021. P13.