Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Obtaining Epoxidized Monoalkyl Oleates of C2-C4 Alcohols Based on Waste Cooking Oil Using Strongly Acidic Ion Exchange Resins

David Davitadze1, Serhii Konovalov1, Stepan Zubenko1, Oleksandra Pertk 1
Affiliation: 
1 V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Acad. Kukharia St., Kyiv 02094, Ukraine davitadzeda@gmail.com
DOI: 
https://doi.org/10.23939/chcht19.02.229
AttachmentSize
PDF icon full_text.pdf737.59 KB
Abstract: 
The current study is devoted to the synthesis of epoxidized monoalkyl oleates of linear and branched C2-C4 alcohols based on wasted cooking oil using commercially available brands of strong acidic ion-exchange resins (non-porous gel Amberlite IR120 and KU-2-8ChS and porous macroreticular Purolite CT275). The process aimed to obtain oleoepoxides as promising bio-based platforms for further chemical modification. At first, corresponding monoalkyl oleates were synthesized via transesterification or esterification. Epoxidation was carried out at 40-60 °C for 4 h using oleate : CH3COOH : H2O2 with a molar ratio of 1 : 0.4 : 2.0. Using 10-11% (dry basis) of sulfocationites provided 96-100 % conversion and >99% selectivity. Halving the sulfocationite load resulted in a significant decrease in conversion (83-86%) for non-porous samples, and the same conversion for porous samples (99 %). The composition of the obtained products (epoxidized oleate content is above 80%) was determined by gas chromatography; the chemical structure was confirmed by 1H and 13C NMR spectroscopy.
References: 

[1] Himri, Y.; Rehman, S.; Mostafaeipour, A.; Mellit, A.; Himri, S.; Namas, T. Worldwide Biomass Resources and Supply. In Encyclopedia of Renewable Energy, Sustainability and the Environment, Vol. 1; Elsevier, 2024; pp 475−484. https://doi.org/10.1016/B978-0-323-93940-9.00146-8
https://doi.org/10.1016/B978-0-323-93940-9.00146-8

[2] Ramli, A.N.M.; Jamek, S.; Azelee, N.I.W.; Manas, N.H.A.; Munir, N.; Patil, R. Agriculture Biomass Characterization and Exploitation. In Encyclopedia of Renewable Energy, Sustainability and the Environment, Vol. 1; Elsevier, 2024; pp 529-542. https://doi.org/10.1016/B978-0-323-93940-9.00067-0
https://doi.org/10.1016/B978-0-323-93940-9.00067-0

[3] Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Y.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521-531. https://doi.org/10.23939/chcht16.04.521
https://doi.org/10.23939/chcht16.04.521

[4] Mandari, V.; Devarai, S.K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: A Critical Review. BioEnergy Res. 2022, 15, 935-961. https://doi.org/10.1007/s12155-021-10333-w
https://doi.org/10.1007/s12155-021-10333-w

[5] Khodadadi, M.R.; Malpartida, I.; Tsang, C.W.; Lin, C.S.K.; Len, C. Recent Advances on the Catalytic Conversion of Waste Cooking Oil. Mol. Catal. 2020, 494, 111128. https://doi.org/10.1016/j.mcat.2020.111128
https://doi.org/10.1016/j.mcat.2020.111128

[6] Appiah, G.; Tulashie, S.K.; Akpari, E.E. A.; Rene, E.R.; Dodoo, D. Biolubricant Production via Esterification and Transesterification Processes: Current Updates and Perspectives. Int. J. Energy Res. 2022, 46, 3860-3890. https://doi.org/10.1002/er.7453
https://doi.org/10.1002/er.7453

[7] Orjuela, A.; Clark, J. Green Chemicals from Used Cooking Oils: Trends, Challenges, and Opportunities. Curr. Opin. Green Sustain. Chem. 2020, 26, 1-12. https://doi.org/10.1016/j.cogsc.2020.100369
https://doi.org/10.1016/j.cogsc.2020.100369

[8] Papeikin, O.; Bodachivska, L.; Venger, I. Waste Food Oils as Components of Eco-Friendly Grease. Chem. Chem. Technol. 2023, 17, 431-437. https://doi.org/10.23939/chcht17
https://doi.org/10.23939/chcht17.02.431

[9] Flach, B.; Lieberz, S.; Bolla, S. European Union: Biofuels Annual. Global Agricultural Information Network (GAIN), 2023.

[10] OECD Publishing, Agricultural Policy Monitoring and Evaluation 2023: Adapting Agriculture to Climate Change OECD, 2023. https://doi.org/10.1787/b14de474-en
https://doi.org/10.1787/b14de474-en

[11] Moser, B.R.; Cermak, S.C.; Doll, K.M.; Kenar, J.A.; Sharma, B.K. A Review of Fatty Epoxide Ring Opening Reactions: Chemistry, Recent Advances, and Applications. J. Am. Oil Chem. Soc. 2022, 99, 801-842. https://doi.org/10.1002/aocs.12623
https://doi.org/10.1002/aocs.12623

[12] Prileschajew, N. Oxydation Ungesättigter Verbindungen Mittels Organischer Superoxyde. Berichte der Dtsch. Chem. Gesellschaft. 1909, 42, 4811-4815. https://doi.org/10.1002/cber.190904204100
https://doi.org/10.1002/cber.190904204100

[13] Silbert, L.S.; Siegel, E.; Swern, D. Peroxides. IX. New Method for the Direct Preparation of Aromatic and Aliphatic Peroxy Acids. J. Org. Chem. 1962, 27, 1336-1342. https://doi.org/10.1021/jo01051a050
https://doi.org/10.1021/jo01051a050

[14] Wai, P.T.; Jiang, P.; Shen, Y.; Zhang, P.; Gu, Q.; Leng, Y. Catalytic Developments in the Epoxidation of Vegetable Oils and the Analysis Methods of Epoxidized Products. RSC Adv. 2019, 9, 38119-38136. https://doi.org/10.1039/C9RA05943A
https://doi.org/10.1039/C9RA05943A

[15] Monono, E.M.; Bahr, J.A.; Pryor, S.W.; Webster, D.C.; Wiesenborn, D.P. Optimizing Process Parameters of Epoxidized Sucrose Soyate Synthesis for Industrial Scale Production. Org. Process Res. Dev. 2015, 19, 1683-1692. https://doi.org/10.1021/acs.oprd.5b00251
https://doi.org/10.1021/acs.oprd.5b00251

[16] Saurabh, T.; Patnaik, M.; Bhagt, S.L.; Vilas R. Epoxidation of Vegetable Oils: A Review. Int. J. Adv. Eng. Technol. 2011, 2, 491-501.

[17] Jalil, M.J. Optimization of Epoxidation Palm-Based Oleic Acid To Produce Polyols. Chem. Chem. Technol. 2022, 16, 66-73. https://doi.org/10.23939/chcht16.01.066
https://doi.org/10.23939/chcht16.01.066

[18] Kurańska, M.; Beneš, H.; Prociak, A.; Trhlíková, O.; Walterová, Z.; Stochlińska, W. Investigation of Epoxidation of Used Cooking Oils with Homogeneous and Heterogeneous Catalysts. J. Clean. Prod. 2019, 236, 117615. https://doi.org/10.1016/j.jclepro.2019.117615
https://doi.org/10.1016/j.jclepro.2019.117615

[19] Mungroo, R.; Pradhan, N.C.; Goud, V.V.; Dalai, A.K. Epoxidation of Canola Oil with Hydrogen Peroxide Catalyzed by Acidic Ion Exchange Resin. J. Am. Oil Chem. Soc. 2008, 85, 887-896. https://doi.org/10.1007/s11746-008-1277-z
https://doi.org/10.1007/s11746-008-1277-z

[20] Campanella, A.; Baltanás, M.A. Degradation of the Oxirane Ring of Epoxidized Vegetable Oils with Solvated Acetic Acid Using Cation‐exchange Resins. Eur. J. Lipid Sci. Technol. 2004, 106, 524-530. https://doi.org/10.1002/ejlt.200400965
https://doi.org/10.1002/ejlt.200400965

[21] Sinadinović‐Fišer, S.; Janković, M.; Petrović, Z. S. Kinetics of in Situ Epoxidation of Soybean Oil in Bulk Catalyzed by Ion Exchange Resin. J. Am. Oil Chem. Soc. 2001, 78, 725-731. https://doi.org/10.1007/s11746-001-0333-9
https://doi.org/10.1007/s11746-001-0333-9

[22] Gómez‐de‐Miranda‐Jiménez‐de‐Aberasturi, O.; Perez‐Arce, J. Efficient Epoxidation of Vegetable Oils through the Employment of Acidic Ion Exchange Resins. Can. J. Chem. Eng. 2019, 97, 1785-1791. https://doi.org/10.1002/cjce.23429
https://doi.org/10.1002/cjce.23429

[23] Turco, R.; Vitiello, R.; Russo, V.; Tesser, R.; Santacesaria, E.; Di Serio, M. Selective Epoxidation of Soybean Oil with Performic Acid Catalyzed by Acidic Ionic Exchange Resins. Green Process. Synth. 2013, 2, 427-434. https://doi.org/10.1515/gps-2013-0045
https://doi.org/10.1515/gps-2013-0045

[24] Derahman, A.; Abidin, Z.Z.; Cardona, F.; Biak, D.R.A.; Tahir, P.M.; Abdan, K.; Liew, K.E. Epoxidation of Jatropha Methyl Esters via Acidic Ion Exchange Resin: Optimization and Characterization. J. Chem. Eng. 2019, 36, 959-968. https://doi.org/10.1590/0104-6632.20190362s20180326
https://doi.org/10.1590/0104-6632.20190362s20180326

[25] Rios, L.A.; Echeverri, D.A.; Franco, A. Epoxidation of Jatropha Oil Using Heterogeneous Catalysts Suitable for the Prileschajew Reaction: Acidic Resins and Immobilized Lipase. Appl. Catal. A Gen. 2011, 394, 132-137. https://doi.org/10.1016/j.apcata.2010.12.033
https://doi.org/10.1016/j.apcata.2010.12.033

[26] Konovalov, S.; Zubenko, S.; Patrylak, L.; Yakovenko, A.; Povazhnyi, V.; Burlachenko, K. Revisiting the Synthesis of Fatty Acid Alkyl Esters of Lower Monohydric Alcohols by Homogeneous Base-Catalyzed Transesterification of Vegetable Oils. In Chemmotological Aspects of Sustainable Development of Transport; Springer, Cham, 2022; pp 49-80. https://doi.org/10.1007/978-3-031-06577-4_4
https://doi.org/10.1007/978-3-031-06577-4_4

[27] Konovalov, S.; Patrylak, L.; Zubenko, S.; Okhrimenko, M.; Yakovenko, A.; Levterov, A. Alkali Synthesis of Fatty Acid Butyl and Ethyl Esters and Comparative Bench Motor Testing of Blended Fuels on Their Basis. Chem. Chem. Technol. 2021, 15, 105-117. https://doi.org/10.23939/chcht15.01.105
https://doi.org/10.23939/chcht15.01.105

[28] Patrylak, L.K.; Zubenko, S.O.; Konovalov, S.V.; Povazhnyi, V. A. Alkaline Transesterification of Sunflower Oil Triglycerides by Butanol-1 over Potassium Hydroxide and Alkoxides Catalysts. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 5, 93-103. https://doi.org/10.32434/0321-4095-2019-126-5-93-103
https://doi.org/10.32434/0321-4095-2019-126-5-93-103

[29] Zubenko, S.O. The Simple Method of Vegetable Oils and Oleochemical Products Acid Value Determination. Catal. Petrochem. 2021, 31, 69-74. https://doi.org/10.15407/kataliz2021.31.069
https://doi.org/10.15407/kataliz2021.31.069

[30] Zubenko, S.O.; Konovalov, S.V; Patrylak, L.K.; Okhrimenko, M.V. Peculiarities of Potassium Butilate Preparation as a Catalyst for the Transesterification Process. Catal. Petrochem. 2017, 26, 36-39. http://nbuv.gov.ua/UJRN/KiN_2017_26_7
https://doi.org/10.1016/j.focat.2017.01.045

[31] Ionity. Kataloh; NIITEKhIM: Cherkasy, 1989.

[32] PurliteTM Product Data Sheet CT25. https://www.purolite.com/product-pdf/CT275.pdf

[33] LenntechTM Product Data Sheet Amberlitetm IR 120 H. https://www.lenntech.com/Data-sheets/Rohm-&-Haas-Amberlite-IR-120-H-L.pdf

[34] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051-1069. https://doi.org/10.1515/pac-2014-1117
https://doi.org/10.1515/pac-2014-1117