The Effect of Pozzolanic Additives on the Performance of the Cementitious Matrix of Recycled Aggregate Concrete

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Tetiana Kropyvnytska1, Myroslav Sanytsky1, Oksana Rykhlitska1
Affiliation: 
1 Lviv Polytechnic National University, 12 Bandera St., Lviv 79013, Ukraine tetiana.p.kropyvnytska@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.04.592
AttachmentSize
PDF icon full_text.pdf1.37 MB
Abstract: 
The article presents the influence of pozzolanic additives and polycarboxylate superplasticizer on the performance of the cementitious matrix of recycled aggregate concrete. The particle size distribution by volume and surface area of fly ash and silica fume is given, and the phase composition and microstructure of cementing paste are investigated.
References: 

[1] UN Environment; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2-26. http://dx.doi.org/10.1016/j.cemconres.2018.03.015
https://doi.org/10.1016/j.cemconres.2018.03.015

[2] Pizoń, J.; Gołaszewski, J.; Alwaeli, M.; Szwan, P. Properties of Concrete with Recycled Concrete Aggregate Containing Metallurgical Sludge Waste. Materials 2020, 13, 1448. https://doi.org/10.3390/ma13061448
https://doi.org/10.3390/ma13061448

[3] González, M.; Caballero, P.; Fernández, D.; Vidal, M.; Bosque, I.; Martínez, C. The Design and Development of Recycled Concretes in a Circular Economy Using Mixed Construction and Demolition Waste. Materials 2021, 14, 4762. https://doi.org/10.3390/ma14164762
https://doi.org/10.3390/ma14164762

[4] Evangelista, L.; Brito, J. Durability Performance of Concrete Made with fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2010, 32, 9-14. https://doi:10.1016/j.cemconcomp.2009.09.005
https://doi.org/10.1016/j.cemconcomp.2009.09.005

[5] Pacheco, J.; Brito, J. Recycled Aggregates Produced from Construction and Demolition Waste for Structural Concrete: Constituents, Properties and Production. Materials 2021, 14, 5748. https://doi.org/10.3390/ma14195748
https://doi.org/10.3390/ma14195748

[6] Tošić, N.; Torrenti, J. New Eurocode Provisions for Recycled Aggregate Concrete and their Implications for the Design of One-Way Slabs. Build. Mater. Struct. 2021, 64, 119-125. https://doi.org/10.5937/GRMK2102119T
https://doi.org/10.5937/GRMK2102119T

[7] Troian, V.; Gots, V; Keita, E.; Roussel, N.; Angst, U.; Robert, J. Challenges in Material Recycling for Postwar Reconstruction. Techn. Lett. 2022, 7, 139-149. https://doi.org/10.21809/rilemtechlett.2022.171
https://doi.org/10.21809/rilemtechlett.2022.171

[8] Xie, T.; Gholampour, A.; Ozbakkaloglu, T. Toward the Development of Sustainable Concretes with Recycled Concrete Aggregates: Comprehensive Review of Studies on Mechanical Properties. J. Mater. Civ. Eng. 2018, 30, 04018211. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002304
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002304

[9] Akhtar, A.; Sarmah, A.K. Construction and Demolition Waste Generation and Properties of Recycled Aggregate Concrete: A Global Perspective. J. Clean. Prod. 2018, 186, 262-281. https://doi.org/10.1016/j.jclepro.2018.03.085
https://doi.org/10.1016/j.jclepro.2018.03.085

[10] Fawzy, A.; Elshami, A.; Ahmad, S. Investigating the Effects of Recycled Aggregate and Mineral Admixtures on the Mechanical Properties and Performance of Concrete. Materials 2023, 16, 5134. https://doi.org/10.3390/ma16145134
https://doi.org/10.3390/ma16145134

[11] Kroviakov, S.; Volchuk, V.; Zavoloka, M.; Krizhanovsky, V. Search for Ranking Approaches of Expanded Clay Concrete Quality Criteria. Mater. Sci. Forum 2019, 968, 20-25. https://doi.org/10.4028/www.scientific.net/MSF.968.20
https://doi.org/10.4028/www.scientific.net/MSF.968.20

[12] Juenger, M.C.; Snellings, R.; Bernal, S. A. Supplementary Cementitious Materials: New Sources, Characterization, and Performance Insights. Cem. Concr. Res. 2019, 122, 257-273. https://doi.org/10.1016/j.cemconres.2019.05.008
https://doi.org/10.1016/j.cemconres.2019.05.008

[13] Sanytsky, M.; Rusyn, B.; Kirakevych, I.; Kaminskyy, A. Architectural Self-Compacting Concrete Based on Nano-Modified Cementitious Systems. In Proceedings of CEE 2023. Lecture Notes in Civil Engineering, vol 438; Blikharskyy, Z.; Koszelnik, P.; Lichołai, L.; Nazarko, P.; Katunský, D., Eds; Springer, Cham., 2024; рр 372-380. https://doi.org/10.1007/978-3-031-44955-0_37
https://doi.org/10.1007/978-3-031-44955-0_37

[14] Sikora, P.; Lootens, D.; Liard, M.; Stephan, D. The Efects of Seawater and Nanosilica on the Performance of Blended Cements and Composites. Appl. Nanosci. 2020, 10, 5009-5026. https://doi.org/10.1007/s13204-020-01328-8
https://doi.org/10.1007/s13204-020-01328-8

[15] Giergiczny, Z. Fly Ash and Slag. Cem. Concr. Res. 2019, 124, 105826. https://doi.org/10.1016/j.cemconres.2019.105826
https://doi.org/10.1016/j.cemconres.2019.105826

[16] Chandra, L.; Hardjito, D. The Impact of Using Fly Ash, Silica Fume and Calcium Carbonate on the Workability and Compressive Strength of Mortar. Proc. Eng. 2015, 125, 773-779. https://doi.org/10.1016/j.proeng.2015.11.132
https://doi.org/10.1016/j.proeng.2015.11.132

[17] Krivenko, P.; Runova, R.; Rudenko, I. Analysis of Plasticizer Effectiveness During Alkaline Cement Structure Formation. East.-Eur. J. Enterp. Technol. 2017, 4(6(88), 35-41. https://doi.org/10.15587/1729-4061.2017.106803
https://doi.org/10.15587/1729-4061.2017.106803

[18] Matias, D.; Brito, De J.; Rosa, A.; Pedro D. Mechanical Properties of Concrete Produced with Recycled Coarse Aggregates-Influence of the Use of Superplasticizers. Const. Build. Mat. 2013, 44, 101-109. https://doi.org/10.1016/j.conbuildmat.2013.03.011
https://doi.org/10.1016/j.conbuildmat.2013.03.011

[19] Junak, J.; Sicakova, A. Effect of Surface Modifications of Recycled Concrete Aggregate on Concrete Properties. Buildings 2018, 8, 2. https://doi.org/10.3390/buildings8010002
https://doi.org/10.3390/buildings8010002

[20] Sanytsky, M.; Kropyvnytska, T.; Fischer, H.-B.; Kondratieva, N. Performance of Low Carbon Modified Composite Gypsum Binders with Increased Water Resistance. Chem. Chem. Technol. 2019, 4, 495-502. https://doi.org/10.23939/chcht13.04.495
https://doi.org/10.23939/chcht13.04.495

[21] Sanytsky, M.; Kropyvnytska, T.; Ivashchyshyn, H. Sustainable Modified Pozzolanic Supplementary Cementitious Materials Based on Natural Zeolite, Fly Ash and Silica Fume. IOP Conf. Ser. Earth Environ. Sci. 2023, 1254, 012004. https://doi.org/10.1088/1755-1315/1254/1/012004
https://doi.org/10.1088/1755-1315/1254/1/012004

[22] Singh P. Study the Effect of Fly Ash, Silica Fume and Recycled Aggregate on the Compressive Strength of Concrete. Int. J. Res. Eng. Adv. Techn. 2015, 3, 71-78. https://www.academia.edu/36958214

[23] Bedoya, M.A.; Tobón, J.I. Incidence of Recycled Aggregates and Ternary Cements on the Compressive Strength and Durability of Ecological Mortars. Case Stud. Constr. Mat. 2022, 17, 01192. https://doi.org/10.1016/j.cscm.2022.e01192
https://doi.org/10.1016/j.cscm.2022.e01192

[24] Su, Y.; Yao,Y.; Wang, Y.; Zhao, X.; Li, L.; Zhang, J. Modification of Recycled Concrete Aggregate and Its Use in Concrete: An Overview of Research Progress. Materials 2023, 16, 7144. https://doi.org/10.3390/ma16227144
https://doi.org/10.3390/ma16227144

[25] Sun, Zh.; Xiong, J.; Cao, Sh.; Zhu, J.; Jia, X.; Hu, Z.; Liu, K. Effect of Different Fine Aggregate Characteristics on Fracture Toughness and Microstructure of Sand Concrete. Materials 2023, 16, 2080. https://doi.org/10.3390/ma16052080
https://doi.org/10.3390/ma16052080

[26] Krivenko, P.; Kovalchuk, O.; Boiko, O. Practical Experience of Construction of Concrete Pavement Using Non-Conditional AGGREGATES. IOP Conf. Ser. Mater. Sci. Eng. 2019, 708, 012089. https://doi.org/10.1088/1757-899X/708/1/012089
https://doi.org/10.1088/1757-899X/708/1/012089

[27] Pushkarova, K.; Kaverin, K.; Kalantaevsky, D. Research of High-Strength Cement Compositions Modified by Complex Organic-Silica Additives. East.-Eur. J. Enterp. Technol. 2015, 5(5(77), 42-51. https://doi.org/10.15587/1729-4061.2015.51836
https://doi.org/10.15587/1729-4061.2015.51836

[28] Mironyuk, I.; Tatarchuk, T.; Paliychuk, N.; Heviuk, I.; Horpynko, A.; Yarema, O.; Mykytyn, I. Effect of Surface-Modified Fly Ash on Compressive Strength of Cement Mortar. Mater. Tod. Proc. 2021, 35, 534-537. https://doi.org/10.1016/j.matpr.2019.10.016
https://doi.org/10.1016/j.matpr.2019.10.016

[29] Sanytsky, M.; Usherov-Marshak, A.; Kropyvnytska, T.; Heviuk, I. Performance of Multicomponent Portland Cements Containing Granulated Blast Furnace Slag, Zeolite, and Limestone. Cement Wapno Beton 2020, 5, 416-427. https://doi.org/10.32047/CWB.2020.25.5.7
https://doi.org/10.32047/CWB.2020.25.5.7

[30] Sanytsky, M.; Kropyvnytska, T.; Shyiko, O. Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior. Chem. Chem. Technol. 2023, 17, 170-178. https://doi.org/10.23939/chcht17.01.170
https://doi.org/10.23939/chcht17.01.170

[31] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386-393. https://doi.org/10.23939/chcht14.03.386
https://doi.org/10.23939/chcht14.03.386

[32] Jiménez, L.F.; Domínguez, J.A.; Vega-Azamar, R.E. Carbon Footprint of Recycled Aggregate Concrete. Adv. Civ. Eng. 2018, 2018, 949741. https://doi.org/10.1155/2018/7949741
https://doi.org/10.1155/2018/7949741

[33] DSTU B V.2.7-187:2009. Building materials. Cements. Methods of determination of bending and compression strength; Ukrarkhbudinform: Kyiv, Ukraine, 2010.