Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

The Effect of Pozzolanic Additives on the Performance of the Cementitious Matrix of Recycled Aggregate Concrete

Tetiana Kropyvnytska1, Myroslav Sanytsky1, Oksana Rykhlitska1
Affiliation: 
1 Lviv Polytechnic National University, 12 Bandera St., Lviv 79013, Ukraine tetiana.p.kropyvnytska@lpnu.ua
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
The article presents the influence of pozzolanic additives and polycarboxylate superplasticizer on the performance of the cementitious matrix of recycled aggregate concrete. The particle size distribution by volume and surface area of fly ash and silica fume is given, and the phase composition and microstructure of cementing paste are investigated.
References: 

[1] UN Environment; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2–26. http://dx.doi.org/10.1016/j.cemconres.2018.03.015
[2] Pizoń, J.; Gołaszewski, J.; Alwaeli, M.; Szwan, P. Properties of Concrete with Recycled Concrete Aggregate Containing Metallurgical Sludge Waste. Materials 2020, 13, 1448. https://doi.org/10.3390/ma13061448
[3] González, M.; Caballero, P.; Fernández, D.; Vidal, M.; Bosque, I.; Martínez, C. The Design and Development of Recycled Concretes in a Circular Economy Using Mixed Construction and Demolition Waste. Materials 2021, 14, 4762. https://doi.org/10.3390/ma14164762
[4] Evangelista, L.; Brito, J. Durability Performance of Concrete Made with fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2010, 32, 9–14. https://doi:10.1016/j.cemconcomp.2009.09.005
[5] Pacheco, J.; Brito, J. Recycled Aggregates Produced from Construction and Demolition Waste for Structural Concrete: Constituents, Properties and Production. Materials 2021, 14, 5748. https://doi.org/10.3390/ma14195748
[6] Tošić, N.; Torrenti, J. New Eurocode Provisions for Recycled Aggregate Concrete and their Implications for the Design of One-Way Slabs. Build. Mater. Struct. 2021, 64, 119–125. https://doi.org/10.5937/GRMK2102119T
[7] Troian, V.; Gots, V; Keita, E.; Roussel, N.; Angst, U.; Robert, J. Challenges in Material Recycling for Postwar Reconstruction. Techn. Lett. 2022, 7, 139–149. https://doi.org/10.21809/rilemtechlett.2022.171
[8] Xie, T.; Gholampour, A.; Ozbakkaloglu, T. Toward the Development of Sustainable Concretes with Recycled Concrete Aggregates: Comprehensive Review of Studies on Mechanical Properties. J. Mater. Civ. Eng. 2018, 30, 04018211. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002304
[9] Akhtar, A.; Sarmah, A.K. Construction and Demolition Waste Generation and Properties of Recycled Aggregate Concrete: A Global Perspective. J. Clean. Prod. 2018, 186, 262–281. https://doi.org/10.1016/j.jclepro.2018.03.085
[10] Fawzy, A.; Elshami, A.; Ahmad, S. Investigating the Effects of Recycled Aggregate and Mineral Admixtures on the Mechanical Properties and Performance of Concrete. Materials 2023, 16, 5134. https://doi.org/10.3390/ma16145134
[11] Kroviakov, S.; Volchuk, V.; Zavoloka, M.; Krizhanovsky, V. Search for Ranking Approaches of Expanded Clay Concrete Quality Criteria. Mater. Sci. Forum 2019, 968, 20–25. https://doi.org/10.4028/www.scientific.net/MSF.968.20
[12] Juenger, M.C.; Snellings, R.; Bernal, S. A. Supplementary Cementitious Materials: New Sources, Characterization, and Performance Insights. Cem. Concr. Res. 2019, 122, 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008
[13] Sanytsky, M.; Rusyn, B.; Kirakevych, I.; Kaminskyy, A. Architectural Self-Compacting Concrete Based on Nano-Modified Cementitious Systems. In Proceedings of CEE 2023. Lecture Notes in Civil Engineering, vol 438; Blikharskyy, Z.; Koszelnik, P.; Lichołai, L.; Nazarko, P.; Katunský, D., Eds; Springer, Cham., 2024; рр 372–380. https://doi.org/10.1007/978-3-031-44955-0_37
[14] Sikora, P.; Lootens, D.; Liard, M.; Stephan, D. The Efects of Seawater and Nanosilica on the Performance of Blended Cements and Composites. Appl. Nanosci. 2020, 10, 5009–5026. https://doi.org/10.1007/s13204-020-01328-8
[15] Giergiczny, Z. Fly Ash and Slag. Cem. Concr. Res. 2019, 124, 105826. https://doi.org/10.1016/j.cemconres.2019.105826
[16] Chandra, L.; Hardjito, D. The Impact of Using Fly Ash, Silica Fume and Calcium Carbonate on the Workability and Compressive Strength of Mortar. Proc. Eng. 2015, 125, 773–779. https://doi.org/10.1016/j.proeng.2015.11.132
[17] Krivenko, P.; Runova, R.; Rudenko, I. Analysis of Plasticizer Effectiveness During Alkaline Cement Structure Formation. East.-Eur. J. Enterp. Technol. 2017, 4(6(88), 35–41. https://doi.org/10.15587/1729-4061.2017.106803
[18] Matias, D.; Brito, De J.; Rosa, A.; Pedro D. Mechanical Properties of Concrete Produced with Recycled Coarse Aggregates–Influence of the Use of Superplasticizers. Const. Build. Mat. 2013, 44, 101–109. https://doi.org/10.1016/j.conbuildmat.2013.03.011
[19] Junak, J.; Sicakova, A. Effect of Surface Modifications of Recycled Concrete Aggregate on Concrete Properties. Buildings 2018, 8, 2. https://doi.org/10.3390/buildings8010002
[20] Sanytsky, M.; Kropyvnytska, T.; Fischer, H.-B.; Kondratieva, N. Performance of Low Carbon Modified Composite Gypsum Binders with Increased Water Resistance. Chem. Chem. Technol. 2019, 4, 495–502. https://doi.org/10.23939/chcht13.04.495
[21] Sanytsky, M.; Kropyvnytska, T.; Ivashchyshyn, H. Sustainable Modified Pozzolanic Supplementary Cementitious Materials Based on Natural Zeolite, Fly Ash and Silica Fume. IOP Conf. Ser. Earth Environ. Sci. 2023, 1254, 012004. https://doi.org/10.1088/1755-1315/1254/1/012004
[22] Singh P. Study the Effect of Fly Ash, Silica Fume and Recycled Aggregate on the Compressive Strength of Concrete. Int. J. Res. Eng. Adv. Techn. 2015, 3, 71–78. https://www.academia.edu/36958214
[23] Bedoya, M.A.; Tobón, J.I. Incidence of Recycled Aggregates and Ternary Cements on the Compressive Strength and Durability of Ecological Mortars. Case Stud. Constr. Mat. 2022, 17, 01192. https://doi.org/10.1016/j.cscm.2022.e01192
[24] Su, Y.; Yao,Y.; Wang, Y.; Zhao, X.; Li, L.; Zhang, J. Modification of Recycled Concrete Aggregate and Its Use in Concrete: An Overview of Research Progress. Materials 2023, 16, 7144. https://doi.org/10.3390/ma16227144
[25] Sun, Zh.; Xiong, J.; Cao, Sh.; Zhu, J.; Jia, X.; Hu, Z.; Liu, K. Effect of Different Fine Aggregate Characteristics on Fracture Toughness and Microstructure of Sand Concrete. Materials 2023, 16, 2080. https://doi.org/10.3390/ma16052080
[26] Krivenko, P.; Kovalchuk, O.; Boiko, O. Practical Experience of Construction of Concrete Pavement Using Non-Conditional AGGREGATES. IOP Conf. Ser. Mater. Sci. Eng. 2019, 708, 012089. https://doi.org/10.1088/1757-899X/708/1/012089
[27] Pushkarova, K.; Kaverin, K.; Kalantaevsky, D. Research of High–Strength Cement Compositions Modified by Complex Organic–Silica Additives. East.-Eur. J. Enterp. Technol. 2015, 5(5(77), 42–51. https://doi.org/10.15587/1729-4061.2015.51836
[28] Mironyuk, I.; Tatarchuk, T.; Paliychuk, N.; Heviuk, I.; Horpynko, A.; Yarema, O.; Mykytyn, I. Effect of Surface-Modified Fly Ash on Compressive Strength of Cement Mortar. Mater. Tod. Proc. 2021, 35, 534-537. https://doi.org/10.1016/j.matpr.2019.10.016
[29] Sanytsky, M.; Usherov-Marshak, A.; Kropyvnytska, T.; Heviuk, I. Performance of Multicomponent Portland Cements Containing Granulated Blast Furnace Slag, Zeolite, and Limestone. Cement Wapno Beton 2020, 5, 416–427. https://doi.org/10.32047/CWB.2020.25.5.7
[30] Sanytsky, M.; Kropyvnytska, T.; Shyiko, O. Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior. Chem. Chem. Technol. 2023, 17, 170–178. https://doi.org/10.23939/chcht17.01.170
[31] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386–393. https://doi.org/10.23939/chcht14.03.386
[32] Jiménez, L.F.; Domínguez, J.A.; Vega-Azamar, R.E. Carbon Footprint of Recycled Aggregate Concrete. Adv. Civ. Eng. 2018, 2018, 949741. https://doi.org/10.1155/2018/7949741
[33] DSTU B V.2.7-187:2009. Building materials. Cements. Methods of determination of bending and compression strength; Ukrarkhbudinform: Kyiv, Ukraine, 2010.