Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Sorption Properties of Brown Coal Processing Product

Andrii Melnykov1, Denis Miroshnichenko2, Pavlo P. Karnozhytskyi2, Pavlo V. Karnozhytskyi2
Affiliation: 
1 Scientific Research Institution "Ukrainian Scientific Research Institute of Ecological Problems (USRIEP), 6 Bakulina St., Kharkiv 61166, Ukraine 2 National Technical University – «Kharkiv Polytechnic Institute» (NTU «KhPI»), 2 Kyrpychova St., Kharkiv 61002, Ukraine pavlokarnoenv@gmail.com
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
The paper is devoted to the study of the sorption properties of residual coal formed after hydrocavitation treatment of brown coal of the Olexandria deposit. The study aims to investigate the possibility of more efficient usage of brown coal processing products that have undergone cavitation treatment. Hydrocavitation of earthy brown coal provides complete and fast extraction of humus acids during extraction with the sodium hydroxide solution. At the same time, the residual coal is pulverized to the size of 10-20 µm. It was shown that the residual carbon has a high sorption capacity (the degree of extraction of methylene blue from the solution is more than 95%).
References: 

[1] Sinitsyna, A. O.; Karnozhytskyi, P.V. Oleksandriiske bure vuhillia yak dzherelo huminovykh rechovyn, Suchasni tekhnolohii pererobky palnykh kopalyn: tezy dopovidei 5 Mizhnarodnoi naukovo-tekhnichnoi konf., NTU “KhPI”, Kharkiv, Ukraine, April 14-15, 2022.
[2] Natsionalnyi hirnychyi universytet, Intekhproekt Ltd. Potencialnaya rol burogo uglya v energeticheskom balanse strany. DTEK, 2018. https://dtek.com/content/files/boris-sobko.pdf (accessed 2024-01-06).
[3] Diuzhev, V.; Sinitsyna, A.; Karnozhytskyi, P.P.; Karnozhytskyi, P.V. Sotsialno-ekonomichni, ekolohichni problemy zbilshennia standartiv zhyttiediialnosti naselennia iz zastosuvanniam innovatsiinykh tekhnolohii ochyshchennia vodnykh resursiv na osnovi vodorozchynnykh sorbentiv otrymanykh z ukrainskoho buroho vuhillia. Visnyk Natsionalnoho tekhnichnoho universytetu "Kharkivskyi politekhnichnyi instytut" (ekonomichni nauky) 2022, 4, 88–92. https://doi.org/10.20998/2519-4461.2022.4.88
[4] Shustov, O.; Bielov, O.P.; Perkova, T.I.; Adamchuk, A. Substantiation of the Ways to Use Lignite Concerning the Integrated Development of Lignite Deposits of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2018, 3, 5–13. https://doi.org/10.29202/nvngu/2018-3/6
[5] Makharadze, T.; Makharadze, G. Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods. Chem. Chem. Technol. 2023, 17, 740–747. https://doi.org/10.23939/chcht17.04.740
[6] Yang, F.; Hou, Y.; Wu, W.; Liu, Zh. The Generation of Benzene Carboxylic Acids from Lignite and the Change in Structural Characteristics of the Lignite during Oxidation. Fuel 2017, 203, 214–221. https://doi.org/10.1016/j.fuel.2017.04.096
[7] Pyshyev, S.; Miroshnichenko, D.; Malík, I.; Contreras, A.B.; Hassan, N., Elrasoul, A.S. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61–73. https://doi.org/10.23939/chcht15.01.061
[8] Verrillo M.; Parisi M.; Savy D.; Caiazzo G.; Di Caprio R.; Luciano M.A.; Cacciapuoti S.; Fabbrocini G.; Piccolo A. Antiflammatory Activity and Potential Dermatological Applications of Characterized Humic Acids from a Lignite and a Green Compost. Sci. Rep. [Online] 2022, 12, 2152. https://www.nature.com/articles/s41598-022-06251-2 (accessed Feb 18, 2022).
[9] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023 17, 357–364. https://doi.org/10.23939/chcht17.02.357
[10] Lebedev, V.; Miroshnichenko, D.; Vytrykush, N.; Pyshyev, S.; Masikevych, A.; Filenko, O.; Tsereniuk, O.; Lysenko, L. Novel Biodegradable Polymers Modified by Humic Acids. Mater. Chem. Phys. 2024, 313, 128778. https://doi.org/10.1016/j.matchemphys.2023.128778
[11] Miroshnichenko, D.; Lebedeva, K.; Cherkashina, A.; Lebedev, V.; Tsereniuk, O.; Krygina, N. Study of Hybrid Modification with Humic Acids of Environmentally Safe Biodegradable Hydrogel Films Based on Hydroxypropyl Methylcellulose. C [Online] 2022, 8, 71. https://www.mdpi.com/2311-5629/8/4/71 (accessed Nov 30, 2022).
[12] Sinitsyna, A.; Karnozhitskiy, P.; Miroshnichenko, D.; Bilets, D. The Use of Brown Coal in Ukraine to Obtain Water-Soluble Sorbents. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 4, 5–10 https://doi.org/10.33271/nvngu/2022-4/005
[13] Sinitsyna, A.O.; Karnozhytskyi P.P. Bure vuhillia – syrovyna dlia otrymannia vodorozchynnykh sorbentiv. Intehrovani tekhnolohii ta enerhozberezhennia 2023, 3, 67–77.
[14] Kostić, I.T.; Andjelković, T.; Nikolić, R.S.; Bojić, A.; Purenovic, M.; Blagojević, S.; Andjelković, D. Copper(II) and Lead(II) Complexation by Humic Acid and Humic-Like Ligands. J. Serb. Chem. Soc. 2011, 76, 1325–1336. https://doi.org/10.2298/JSC110310115K
[15] Tipping, E. Cation Binding by Humic Substances; Cambridge University Press, 2005.
[16] Kyzioł-Komosińska, J.; Dzieniszewska, A.; Krzyżewska, I. Sorption Properties of Lignite for Some Acid Dyes. Przem. Chem. 2014, 93, 657–661.
[17] Saad Algarni, T.; Al-Mohaimeed, A.M. Water Purification by Adsorption of Pigments or Pollutants via Metaloxide. J. King Saud Univ. Sci. 2022, 34, 102339. https://doi.org/10.1016/j.jksus.2022.102339
[18] El Messaoudi, N.; El Khomri, M.; El Mouden, A.; Bouich, A.; Jada, A.; Lacherai, A.; Iqbal, H.; Mulla, S.; Kumar, V.; Américo-Pinheiro, J. Regeneration and Reusability of Non-Conventional Low-Cost Adsorbents to Remove Dyes from Wastewaters in Multiple Consecutive Adsorption–Desorption Cycles: A Review. Biomass Convers. Biorefin. 2022, 14, 11739–11756. https://doi.org/10.1007/s13399-022-03604-9
[19] Shmychkova, O.; Protsenko, V.; Velichenko, O. Ochyshchennia stichnykh vod vid farmatsevtychnykh preparativ: ohliad litratury. Pytannia khimii ta khimichnoi tekhnolohii 2021, 3, 4–31. https://doi.org/10.32434/0321-4095-2021-136-3-4-31
[20] Sablii, L.A.; Zhukova, V.S. Effective Technology of Pharmaceutical Enterprises Wastewater Local Treatment from Antibiotics. Biotechnol. Acta 2020, 13, 81–88. https://doi.org/10.15407/biotech13.03.081
[21] Vrchovecká, S.; Asatiani, N.; Antoš, V.; Wacławek, S.; Hrabák, P. Study of Adsorption Efficiency of Lignite, Biochar, and Polymeric Nanofibers for Veterinary Drugs in WWTP Effluent Water. Water Air Soil Pollut. 2023, 234, 268. https://doi.org/10.1007/s11270-023-06281-0
[22] Karczewska, A.; Chodak, T.; Kaszubkiewicz, J. The Suitability of Brown Coal as a Sorbent for Heavy Metals in Polluted Soils. Appl. Geochem. 1996, 11, 343–346. https://doi.org/10.1016/0883-2927(95)00043-7
[23] Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Thornton, S. F.; Fenton, O.; Malina, G.; Szara, E. Restoration of Soil Quality Using Biochar and Brown Coal Waste: A Review. Sci. Total Environ. 2022, 722, 137852. https://doi.org/10.1016/j.scitotenv.2020.137852
[24] Symanowicz, B.; Toczko, R. Brown Coal Waste in Agriculture and Environmental Protection: A Review. Sustainability 2022, 15, 13371. https://doi.org/10.3390/su151813371
[25] Sinitsyna, A.O.; Karnozhytskyi, P.V.; Bilets, D. Yu. Modernization of the Complexation-Ultrafiltration Process for Removal of Copper Ions from Water. Pet. Coal [Online] 2021, 63, 1065–1069 https://www.vurup.sk/petroleum/2021/volume-63/ (accessed Nov 18, 2021).
[26] Fito, J.; Abewaa, M.; Mengistu, A.; Angassa, K.; Demeke Ambaye, A.; Moyo, W.; Nkambule, Th. Adsorption of Methylene Blue from Textile Industrial Wastewater Using Activated Carbon Developed from Rumex abyssinicus Plant. Sci. Rep. [Online] 2023, 13, 5427. https://www.nature.com/articles/s41598-023-32341-w (accessed Apr 3, 2023).
[27] Kuang, Y.; Zhang, X.; Zhou, S. Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water 2020, 12, 587. https://doi.org/10.3390/w12020587
[28] Hoc Thang, N.; Sy Khang, D.; Duy Hai, T.; Thi Nga, D.; Dinh Tuan, P. Methylene Blue Adsorption Mechanism of Activated Carbon Synthesised from Cashew Nut Shells. RSC Advances 2021, 11, 26563–26570. https://doi.org/10.1039/d1ra04672a
[29] Yan, H.; Zhang, W.; Kan, X.; Dong, L.; Jiang, Z.; Li, H.; Yang, H.; Cheng, R. Sorption of Methylene Blue by Carboxymethyl Cellulose and Reuse Process in a Secondary Sorption. Colloids Surf. A: Physicochem. Eng. Asp. 2011, 380, 143–151. https://doi.org/10.1016/j.colsurfa.2011.02.045
[30] Al-Ghouti, M.A.; Al-Absi, R.S. Mechanistic Understanding of the Adsorption and Thermodynamic Aspects of Cationic Methylene Blue Dye onto Cellulosic Olive Stones Biomass from Wastewater. Sci. Rep. [Online] 2020, 10, 15928. https://www.nature.com/articles/s41598-020-72996-3 (accessed Sep 28, 2020).
[31] Djama, C.; Bouguettoucha, A.; Chebli, D.; Amrane, A.; Tahraoui, H.; Zhang, J.; Mouni, L. Experimental and Theoretical Study of Methylene Blue Adsorption on a New Raw Material, Cynara scolymus—A Statistical Physics Assessment. Sustainability 2023, 15, 10364. https://doi.org/10.3390/su151310364
[32] Li, H.; Budarin, V.L.; Clark, J.H.; North, M.; Wu, X. Rapid and Efficient Adsorption of Methylene Blue Dye from Aqueous Solution by Hierarchically Porous, Activated Starbons®: Mechanism and Porosity Dependence. J. Hazard. Mater. 2022, 436, 129174. https://doi.org/10.1016/j.jhazmat.2022.129174
[33] Ilgin, P.; Onder, A.; Kıvanç, M.R.; Ozay, H.; Ozay, O. Adsorption of Methylene Blue from Aqueous Solution Using poly(2-Acrylamido-2-methyl-1-propanesulfonic acid-co-2-Hydroxyethyl Methacrylate) Hydrogel Crosslinked by Activated Carbon. J. Macromol. Sci. Part A Pure Appl. Chem. 2023, 60, 135–149. https://doi.org/10.1080/10601325.2023.2165945
[34] Kravchenko, O.V.; Suvorova, Y.H.; Homan, V.A.; Musyenko, E.Iu.; Danylenko, A.M. Kompleks dlya provedeniya issledovanij processov proizvodstva, podgotovki i szhiganiya novyh vidov kompozicionnyh topliv. Tekhnichna teplofizyka ta promyslova teploenerhetyka 2013, 5, 150–160.