Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

A Review of Road Bitumen Modification Methods. Part 1 – Physical Modification

Volodymyr Gunka1, Olena Astakhova1, Yurii Hrynchuk1, Iurii Sidun1, Volodymyr Reutskyy1, Iryna Mirchuk2, Olha Poliak1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., 79013 Lviv, Ukraine 2 National Transport University, 1 Mykhailа Omelianovycha-Pavlenka St., 01010 Kyiv, Ukraine volodymyr.m.hunka@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.295
AttachmentSize
PDF icon full_text.pdf330.95 KB
Abstract: 
The information in this study is based on a thorough review of recent articles related to the production of binders for road construction and the improvement of their performance properties. The main attention is paid to the physical modification of road bitumen with polymer modifiers. The influence of the three main types of polymers (thermoplastics, elastomers, and thermoplastic elastomers) on the main physical and mechanical properties of bitumen-polymer compositions is shown. The main technological parameters and features of the physical modification of bitumen by different types of polymer modifiers have been determined.
References: 

[1] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
https://doi.org/10.23939/chcht15.02.274

[2] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443
https://doi.org/10.23939/chcht15.03.443

[3] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
https://doi.org/10.23939/chcht15.04.608

[4] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
https://doi.org/10.23939/chcht16.01.142

[5] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295-302. https://doi.org/10.23939/chcht16.02.295
https://doi.org/10.23939/chcht16.02.295

[6] Gunka, V.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Prysiazhnyi, Yu.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475-483. https://doi.org/10.23939/chcht16.03.475
https://doi.org/10.23939/chcht16.03.475

[7] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211-220. https://doi.org/10.23939/chcht17.01.211
https://doi.org/10.23939/chcht17.01.211

[8] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701-710. https://doi.org/10.23939/chcht17.03.701
https://doi.org/10.23939/chcht17.03.701

[9] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916-622. https://doi.org/10.23939/chcht17.04.916
https://doi.org/10.23939/chcht17.04.916

[10] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688-700. https://doi.org/10.23939/chcht17.03.688
https://doi.org/10.23939/chcht17.03.688

[11] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
https://doi.org/10.23939/chcht15.03.438

[12] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54-62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
https://doi.org/10.32434/0321-4095-2023-148-3-54-62

[13] Asphalt Institute; European Bitumen Association. The bitumen industry - a global perspective: production, chemistry, use, specification, and occupational exposure. Third edition; Asphalt Institute; Eurobitume: Lexigton, KY, Brussels, Belgium, 2015.

[14] Revuelta, M. B. Construction Materials: Geology, Production and Applications; Springer Nature: Switzerland, 2021. https://doi.org/10.1007/978-3-030-65207-4
https://doi.org/10.1007/978-3-030-65207-4

[15] Nivitha, M. R.; Roy, N.; Murali Krishnan, J. Influence of Refinery Processing Methods on Ageing of Bitumen. Sādhanā 2019, 44, 128. https://doi.org/10.1007/s12046-019-1107-z
https://doi.org/10.1007/s12046-019-1107-z

[16] Park, J. H.; Son, S. H. Extraction of Bitumen with Sub- and Supercritical Water. Korean J Chem Eng. 2011, 28, 455-460. https://doi.org/10.1007/s11814-010-0358-5
https://doi.org/10.1007/s11814-010-0358-5

[17] Zachariah, A.; de Klerk, A. Partial Upgrading of Bitumen: Impact of Solvent Deasphalting and Visbreaking Sequence. Energy Fuels 2017, 31, 9374-9380. https://doi.org/10.1021/acs.energyfuels.7b02004
https://doi.org/10.1021/acs.energyfuels.7b02004

[18] Błażejowski, K.; Wójcik-Wiśniewska, M. Bitumen Handbook; ORLEN Asfalt: Plock, Poland, 2017.

[19] Eurobitume. Physical differentiation between air-rectified and oxidised bitumens. 2011. http://www.materialedge.co.uk/docs/Differentiating-air-rectified-and-oxi...

[20] Mousavi, M.; Pahlavan, F.; Oldham, D.; Hosseinnezhad, S.; Fini, E. H. Multiscale Investigation of Oxidative Aging in Biomodified Asphalt Binder. J. Phys. Chem. C 2016, 120, 17224-17233. https://doi.org/10.1021/acs.jpcc.6b05004
https://doi.org/10.1021/acs.jpcc.6b05004

[21] Oldham, D.; Qu, X.; Wang, H.; Fini, E. H. Investigating Change of Polydispersity and Rheology of Crude Oil and Bitumen Due to Asphaltene Oxidation. Energy Fuels 2020, 34, 10299-10305. https://doi.org/10.1021/acs.energyfuels.0c01344
https://doi.org/10.1021/acs.energyfuels.0c01344

[22] Biturox. https://www.biturox.com

[23] Nivitha, M. R.; Devika, R.; Murali Krishnan, J.; Roy, N. Influence of Bitumen Type and Polymer Dosage on the Relaxation Spectrum of Styrene-Butadiene-Styrene (SBS)/Styrene-Butadiene (SB) Modified Bitumen. Mech Time Depend Mater 2023, 27, 27-98. https://doi.org/10.1007/s11043-021-09531-y
https://doi.org/10.1007/s11043-021-09531-y

[24] Adiko, S. B.; Gureev, A. A.; Khasanova, N. M.; Sakharov, B. V. Processing of High-Paraffinic vacuum residues by thermocatalytic methods to obtain bitumen. Constr Build Mater. 2021, 285, 122880. https://doi.org/10.1016/j.conbuildmat.2021.122880
https://doi.org/10.1016/j.conbuildmat.2021.122880

[25] Kamelia, L.; Rietjens, I. M.; Boogaard, P. J. Developmental Toxicity Testing of the Fume Condensate Extracts of Bitumen and Oxidized Asphalt in a Series of in vitro Alternative Assays. Toxicol in Vitro 2021, 75, 105195. https://doi.org/10.1016/j.tiv.2021.105195
https://doi.org/10.1016/j.tiv.2021.105195

[26] Zhang, Z.; Fang, Y.; Yang, J.; Li, X. A Comprehensive Review of Bio-Oil, Bio-Binder and Bio-Asphalt Materials: Their Source, Composition, Preparation and Performance. J. Traffic Transp. Eng. 2022. 9, 151-166. https://doi.org/10.1016/j.jtte.2022.01.003
https://doi.org/10.1016/j.jtte.2022.01.003

[27] Zhang, Y.; Liu, X.; Apostolidis, P.; Gard, W.; van de Ven, M.; Erkens, S.; Jing, R. Chemical and Rheological Evaluation of Aged Lignin-Modified Bitumen. Materials 2018, 12, 4176. https://doi.org/10.3390/ma12244176
https://doi.org/10.3390/ma12244176

[28] Al-Otoom, A.; Al-Harahsheh, M.; Allawzi, M.; Kingman, S.; Robinson, J.; Al-Harahsheh, A.; Saeid, A. Physical and Thermal Properties of Jordanian Tar Sand. Fuel Process. Technol. 2013, 106, 174-180. https://doi.org/10.1016/j.fuproc.2012.07.021
https://doi.org/10.1016/j.fuproc.2012.07.021

[29] Anupam, K.; Akinmade, D.; Kasbergen, C.; Erkens, S.; Adebiyi, F. A state-of-the-Art Review of Natural Bitumen in Pavement: Underlining Challenges and the Way Forward. J. Clean. Prod. 2022, 382, 134957. https://doi.org/10.1016/j.jclepro.2022.134957
https://doi.org/10.1016/j.jclepro.2022.134957

[30] Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. https://doi.org/10.3390/app9040742
https://doi.org/10.3390/app9040742

[31] Pyshyev, S., Gunka, V., Grytsenko, Y., Bratychak, M. Polymer Modified Bitumen. Chem. Chem. Technol. 2016, 10, 631-636. https://doi.org/10.23939/chcht10.04si.631
https://doi.org/10.23939/chcht10.04si.631

[32] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14
https://doi.org/10.1007/978-3-030-27011-7_14

[33] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
https://doi.org/10.3390/ma15165693

[34] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
https://doi.org/10.3390/coatings12121934

[35] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199-1206.

[36] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95-102. https://doi.org/10.1007/978-3-030-57340-9_12
https://doi.org/10.1007/978-3-030-57340-9_12

[37] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
https://doi.org/10.3390/ma15051774

[38] Donchenko, M.; Grynyshyn, O.; Demchuk, Yu.; Topilnytskyy, P.; Turba, Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681-687. https://doi.org/10.23939/chcht17.03.681
https://doi.org/10.23939/chcht17.03.681

[39] Gunka, V., Hidei, V., Sidun, I., Demchuk, Y., Stadnik, V., Shapoval, P., Sobol, Kh.; Vytrykush, N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
https://doi.org/10.3390/coatings13071183

[40] Leal Filho, W.; Saari, U.; Fedoruk, M.; Iital, A.; Moora, H.; Klöga, M.; Voronova, V. An Overview of the Problems Posed by Plastic Products and the Role of Extended Producer Responsibility in Europe. J. Clean. Prod. 2019, 214, 550-558. https://doi.org/10.1016/j.jclepro.2018.12.256
https://doi.org/10.1016/j.jclepro.2018.12.256

[41] Wu, S.; Montalvo, L. Repurposing Waste Plastics into Cleaner Asphalt Pavement Materials: A Critical Literature Review. J. Clean. Prod. 2021, 280, 124355. https://doi.org/10.1016/j.jclepro.2020.124355
https://doi.org/10.1016/j.jclepro.2020.124355

[42] He, P.; Chen, L.; Shao, L.; Zhang, H.; Lü, F. Municipal Solid Waste (MSW) Landfill: A Source of Microplastics?-Evidence of Microplastics in Landfill Leachate. Water Res. 2019, 159, 38-45. https://doi.org/10.1016/j.watres.2019.04.060
https://doi.org/10.1016/j.watres.2019.04.060

[43] Ge, D.; Yan, K.; You, Z.; Xu, H. Modification Mechanism of Asphalt Binder with Waste Tire Rubber and Recycled Polyethylene. Constr Build Mater. 2016, 126, 66-76. https://doi.org/10.1016/j.conbuildmat.2016.09.014
https://doi.org/10.1016/j.conbuildmat.2016.09.014

[44] Joohari, I. B.; Maniam, S.; Giustozzi, F. Influence of Compatibilizers on the Storage Stability of Hybrid Polymer-Modified Bitumen with Recycled Polyethylene. In Plastic Waste for Sustainable Asphalt Roads; Giustozzi, F.; Nizamuddin, S., Eds.; Woodhead Publishing, 2022; pp 215-232. https://doi.org/10.1016/B978-0-323-85789-5.00011-3
https://doi.org/10.1016/B978-0-323-85789-5.00011-3

[45] Kishchynskyi, S.; Nagaychuk, V.; Bezuglyi, A. Improving Quality and Durability of Bitumen and Asphalt Concrete by Modification Using Recycled Polyethylene Based Polymer Composition. Procedia engineering 2016, 143, 119-127. https://doi.org/10.1016/j.proeng.2016.06.016
https://doi.org/10.1016/j.proeng.2016.06.016

[46] Nizamuddin, S.; Jamal, M.; Gravina, R.; Giustozzi, F. Recycled Plastic as Bitumen Modifier: The Role of Recycled Linear Low-Density Polyethylene in the Modification of Physical, Chemical and Rheological Properties of Bitumen. J. Clean. Prod. 2020, 266, 121988. https://doi.org/10.1016/j.jclepro.2020.121988
https://doi.org/10.1016/j.jclepro.2020.121988

[47] Xu, F.; Zhao, Y.; Li, K. Using Waste Plastics as Asphalt Modifier: A Review. Materials 2022, 15, 110. https://doi.org/10.3390/ma15010110
https://doi.org/10.3390/ma15010110

[48] Appiah, J. K.; Berko-Boateng, V. N.; Tagbor, T. A. Use of Waste Plastic Materials for Road Construction in Ghana. Case Stud. Constr. Mater. 2017, 6, 1-7. https://doi.org/10.1016/j.cscm.2016.11.001
https://doi.org/10.1016/j.cscm.2016.11.001

[49] Brasileiro, L.; Moreno-Navarro, F.; Tauste-Martínez, R.; Matos, J.; Rubio-Gámez, M. D. C. Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability 2019, 11, 646. https://doi.org/10.3390/su11030646
https://doi.org/10.3390/su11030646

[50] Hariadi, D.; Saleh, S. M.; Yamin, R. A.; Aprilia, S. Utilization of LDPE Plastic Waste on the Quality of Pyrolysis Oil as an Asphalt Solvent Alternative. Therm. Sci. Eng. Prog. 2021, 23, 100872. https://doi.org/10.1016/j.tsep.2021.100872
https://doi.org/10.1016/j.tsep.2021.100872

[51] Ahmedzade, P.; Demirelli, K.; Günay, T.; Biryan, F.; Alqudah, O. Effects of Waste Polypropylene Additive on the Properties of Bituminous Binder. Procedia Manuf. 2015, 2, 165-170. https://doi.org/10.1016/j.promfg.2015.07.029
https://doi.org/10.1016/j.promfg.2015.07.029

[52] Razali, M. N.; Aziz, M. A. A.; Jamin, N. F. M.; Salehan, N. A. M. Modification of Bitumen Using Polyacrylic Wig Waste. AIP Conf. Proc. 2018, 1930, 020051. https://doi.org/10.1063/1.5022945
https://doi.org/10.1063/1.5022945

[53] Behl, A.; Sharma, G.; Kumar, G. A Sustainable Approach: Utilization of Waste PVC in Asphalting of Roads. Constr Build Mater. 2014, 54, 113-117. https://doi.org/10.1016/j.conbuildmat.2013.12.050
https://doi.org/10.1016/j.conbuildmat.2013.12.050

[54] Lugeiyamu, L.; Kunlin, M.; Mensahn, E. S.; Faraz, A. Utilization of Waste Polyethylene Terephthalate (PET) as Partial Replacement of Bitumen in Stone Mastic Asphalt. Constr Build Mater. 2021, 309, 125176. https://doi.org/10.1016/j.conbuildmat.2021.125176
https://doi.org/10.1016/j.conbuildmat.2021.125176

[55] Vila-Cortavitarte, M.; Lastra-González, P.; Calzada-Pérez, M. Á.; Indacoechea-Vega, I. Analysis of the Influence of Using Recycled Polystyrene as a Substitute for Bitumen in the Behaviour of Asphalt Concrete Mixtures. J. Clean. Prod. 2018, 170, 1279-1287. https://doi.org/10.1016/j.jclepro.2017.09.232
https://doi.org/10.1016/j.jclepro.2017.09.232

[56] Costa, L. M.; Silva, H. M.; Peralta, J.; Oliveira, J. R. Using Waste Polymers as a Reliable Alternative for Asphalt Binder Modification - Performance and Morphological Assessment. Constr Build Mater. 2019, 198, 237-244. https://doi.org/10.1016/j.conbuildmat.2018.11.279
https://doi.org/10.1016/j.conbuildmat.2018.11.279

[57] Shahane, H. A.; Bhosale, S. S. E-Waste Plastic Powder Modified Bitumen: Rheological Properties and Performance Study of Bituminous Concrete. Road Mater. Pavement Des. 2021, 22, 682-702. https://doi.org/10.1080/14680629.2019.1642944
https://doi.org/10.1080/14680629.2019.1642944

[58] Bazmara, B.; Tahersima, M.; Behravan, A. Influence of Thermoplastic Polyurethane and Synthesized Polyurethane Additive in Performance of Asphalt Pavements. Constr Build Mater. 2018, 166, 1-11. https://doi.org/10.1016/j.conbuildmat.2018.01.093
https://doi.org/10.1016/j.conbuildmat.2018.01.093

[59] Roman, C.; Cuadri, A. A.; Liashenko, I.; García-Morales, M.; Partal, P. Linear and Non-Linear Viscoelastic Behavior of SBS and LDPE Modified Bituminous Mastics. Constr Build Mater. 2016, 123, 464-472. https://doi.org/10.1016/j.conbuildmat.2016.07.027
https://doi.org/10.1016/j.conbuildmat.2016.07.027

[60] Li, M.; Zhang, M.; Rong, H.; Zhang, X.; He, L.; Han, P.; Tong, M. Transport and Deposition of Plastic Particles in Porous Media during Seawater Intrusion and Groundwater-Seawater Displacement Processes. Sci. Total Environ. 2021, 781, 146752. https://doi.org/10.1016/j.scitotenv.2021.146752
https://doi.org/10.1016/j.scitotenv.2021.146752

[61] Movilla-Quesada, D.; Raposeiras, A. C.; Silva-Klein, L. T.; Lastra-González, P.; Castro-Fresno, D. Use of Plastic Scrap in Asphalt Mixtures Added by Dry Method as a Partial Substitute for Bitumen. Waste Manage. 2019, 87, 751-760. https://doi.org/10.1016/j.wasman.2019.03.018
https://doi.org/10.1016/j.wasman.2019.03.018

[62] Nizamuddin, S.; Boom, Y. J.; Giustozzi, F. Sustainable Polymers from Recycled Waste Plastics and their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. https://doi.org/10.3390/polym13193242
https://doi.org/10.3390/polym13193242

[63] Mashaan, N. S.; Chegenizadeh, A.; Nikraz, H.; Rezagholilou, A. Investigating the Engineering Properties of Asphalt Binder Modified with Waste Plastic Polymer. Ain Shams Eng. J. 2021, 12, 1569-1574. https://doi.org/10.1016/j.asej.2020.08.035
https://doi.org/10.1016/j.asej.2020.08.035

[64] Costa, L. M.; Silva, H. M. R. D.; Oliveira, J. R.; Fernandes, S. R. Incorporation of Waste Plastic in Asphalt Binders to Improve their Performance in the Pavement. Int. J. Pavement Res. Technol. 2013, 6, 457-464. https://doi.org/10.6135/ijprt.org.tw/2013.6(4).457

[65] Grynyshyn, O.; Astakhova, O.; Chervinskyy, T. Production of Bitumen Modified by Petroleum Resins on the Basis of Tars of Ukrainian Oils. Chem. Chem. Technol. 2010, 4, 241-246. https://doi.org/10.23939/chcht04.03.241
https://doi.org/10.23939/chcht04.03.241

[66] Grynyshyn, O.; Bratychak, M.; Krynytskiy, V.; Donchak, V. Petroleum Resins for Bitumens Modification. Chem. Chem. Technol. 2008, 2, 47-53. https://doi.org/10.23939/chcht02.01.047
https://doi.org/10.23939/chcht02.01.047

[67] Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Shved, M.; Kochubei, V. Oil and Gas Processing Products to Obtain Polymers Modified Bitumen. Int. J. Pavement Res. Technol. 2017, 10, 289-296. https://doi.org/10.1016/j.ijprt.2017.05.001
https://doi.org/10.1016/j.ijprt.2017.05.001

[68] Pyshyev, S.; Prysiazhnyi, Y.; Gunka, V.; Reutskyy, V.; Bannikov, L. Modification of Petroleum Bitumen by Resins Obtained from Liquid Products of Coal Coking: Composition, Properties, and Application. Notice 1: Research of Raw Material Composition and Resin Synthesis. Pet. Coal 2022, 64, 106-119.

[69] Vargas, C.; El Hanandeh, A. Systematic Literature Review, Meta-Analysis and Artificial Neural Network Modelling of Plastic Waste Addition to Bitumen. J. Clean. Prod. 2021, 280, 124369. https://doi.org/10.1016/j.jclepro.2020.124369
https://doi.org/10.1016/j.jclepro.2020.124369

[70] Binti Joohari, I.; Giustozzi, F. Hybrid Polymerisation: An Exploratory Study of the Chemo-Mechanical and Rheological Properties of Hybrid-Modified Bitumen. Polymers 2020, 12, 945. https://doi.org/10.3390/polym12040945
https://doi.org/10.3390/polym12040945

[71] Yan, K.; Chen, J.; You, L.; Tian, S. Characteristics of Compound Asphalt Modified by Waste Tire Rubber (WTR) and Ethylene Vinyl Acetate (EVA): Conventional, Rheological, and Microstructural Properties. J. Clean. Prod. 2020, 258, 120732. https://doi.org/10.1016/j.jclepro.2020.120732
https://doi.org/10.1016/j.jclepro.2020.120732

[72] Zhang, F., Hu, C. The Research for Crumb Rubber/Waste Plastic Compound Modified Asphalt. J. Therm. Anal. Calorim. 2016, 124, 729-741. https://doi.org/10.1007/s10973-015-5198-4
https://doi.org/10.1007/s10973-015-5198-4

[73] Brovelli, C.; Crispino, M.; Pais, J.; Pereira, P. Using Polymers to Improve the Rutting Resistance of Asphalt Concrete. Constr Build Mater. 2015, 77, 117-123. https://doi.org/10.1016/j.conbuildmat.2014.12.060
https://doi.org/10.1016/j.conbuildmat.2014.12.060

[74] Formela, K.; Sulkowski, M.; Saeb, M. R.; Colom, X.; Haponiuk, J. T. Assessment of Microstructure, Physical and Thermal Properties of Bitumen Modified with LDPE/GTR/Elastomer Ternary Blends. Constr Build Mater. 2016, 106, 160-167. https://doi.org/10.1016/j.conbuildmat.2015.12.108
https://doi.org/10.1016/j.conbuildmat.2015.12.108

[75] Nasr, D.; Pakshir, A. H. Rheology and Storage Stability of Modified Binders with Waste Polymers Composites. Road Mater. Pavement Des. 2019, 20, 773-792. https://doi.org/10.1080/14680629.2017.1417152
https://doi.org/10.1080/14680629.2017.1417152

[76] Al-Abdul Wahhab, H. I.; Dalhat, M. A.; Habib, M. A. Storage Stability and High-Temperature Performance of Asphalt Binder Modified with Recycled Plastic. Road Mater. Pavement Des. 2017, 18, 1117-1134. https://doi.org/10.1080/14680629.2016.1207554
https://doi.org/10.1080/14680629.2016.1207554

[77] Ansari, A. H.; Jakarni, F. M.; Muniandy, R.; Hassim, S.; Elahi, Z. Natural Rubber as a Renewable and Sustainable Bio-Modifier for Pavement Applications: A Review. J. Clean. Prod. 2021, 289, 125727. https://doi.org/10.1016/j.jclepro.2020.125727
https://doi.org/10.1016/j.jclepro.2020.125727

[78] Ibrahim, S.; Daik, R.; Abdullah, I. Functionalization of Liquid Natural Rubber via Oxidative Degradation of Natural Rubber. Polymers 2014, 6, 2928-2941. https://doi.org/10.3390/polym6122928
https://doi.org/10.3390/polym6122928

[79] Poovaneshvaran, S.; Hasan, M. R. M.; Jaya, R. P. Impacts of Recycled Crumb Rubber Powder and Natural Rubber Latex on the Modified Asphalt Rheological Behaviour, Bonding, and Resistance to Shear. Constr Build Mater. 2020, 234, 117357. https://doi.org/10.1016/j.conbuildmat.2019.117357
https://doi.org/10.1016/j.conbuildmat.2019.117357

[80] Saowapark, W.; Jubsilp, C.; Rimdusit, S. Natural Rubber Latex-Modified Asphalts for Pavement Application: Effects of Phosphoric Acid and Sulphur Addition. Road Mater. Pavement Des. 2019, 20, 211-224. https://doi.org/10.1080/14680629.2017.1378117
https://doi.org/10.1080/14680629.2017.1378117

[81] Al-Sabaeei, A. M.; Agus Mustofa, B.; Sutanto, M. H.; Sunarjono, S.; Bala, N. Aging and Rheological Properties of Latex and Crumb Rubber Modified Bitumen Using Dynamic Shear Rheometer. J. Eng. Technol. Sci. 2020, 52, 385-398. https://doi.org/10.5614/j.eng.technol.sci.2020.52.3.6
https://doi.org/10.5614/j.eng.technol.sci.2020.52.3.6

[82] Azahar, N. M.; Hassan, N. A.; Jaya, R. P.; Hainin, M. R.; Yusoff, N. I. M.; Kamaruddin, N. H. M.; Yaacob, H. Properties of Cup Lump Rubber Modified Asphalt Binder. Road Mater. Pavement Des. 2021, 22, 1329-1349. https://doi.org/10.1080/14680629.2019.1687007
https://doi.org/10.1080/14680629.2019.1687007

[83] Shaffie, E.; Arshad, A. K.; Alisibramulisi, A.; Ahmad, J.; Hashim, W.; Abd Rahman, Z.; Jaya, R. P. Effect of Mixing Variables on Physical Properties of Modified Bitumen Using Natural Rubber Latex. Int. J. Civ. Eng. Technol. 2018, 9, 1812-1821.

[84] Bindu, C. S.; Joseph, M. S.; Sibinesh, P. S.; George, S.; Sivan, S. Performance Evaluation of Warm Mix Asphalt Using Natural Rubber Modified Bitumen and Cashew Nut Shell Liquid. Int. J. Pavement Res. Technol. 2020, 13, 442-453.
https://doi.org/10.1007/s42947-020-0241-7

[85] Wen, Y., Wang, Y., Zhao, K., Sumalee, A. The Use of Natural Rubber Latex as a Renewable and Sustainable Modifier of Asphalt Binder. Int. J. Pavement Eng. 2017, 18, 547-559. https://doi.org/10.1080/10298436.2015.1095913
https://doi.org/10.1080/10298436.2015.1095913

[86] Shafii, M.; Ahmad, J.; Shaffie, E. Physical Properties of Asphalt Emulsion Modified with Natural Rubber Latex. World J. Eng. 2013, 10, 159-164. https://doi.org/10.1260/1708-5284.10.2.159
https://doi.org/10.1260/1708-5284.10.2.159

[87] Yu, X.; Wang, Y.; Luo, Y. Impacts of Water Content on Rheological Properties and Performance-Related Behaviors of Foamed Warm-Mix Asphalt. Constr Build Mater. 2013, 48, 203-209. https://doi.org/10.1016/j.conbuildmat.2013.06.018
https://doi.org/10.1016/j.conbuildmat.2013.06.018

[88] Han, Y.; Tian, J.; Ding, J.; Shu, L.; Ni, F. Evaluating the Storage Stability of SBR-Modified Asphalt Binder Containing Polyphosphoric Acid (PPA). Case Stud. Constr. Mater. 2022, 17, e01214. https://doi.org/10.1016/j.cscm.2022.e01214
https://doi.org/10.1016/j.cscm.2022.e01214

[89] Kök, B. V.; Çolak, H. Laboratory Comparison of the Crumb-Rubber and SBS Modified Bitumen and Hot Mix Asphalt. Constr Build Mater. 2011, 25, 3204-3212. https://doi.org/10.1016/j.conbuildmat.2011.03.005
https://doi.org/10.1016/j.conbuildmat.2011.03.005

[90] Presti, D. L. Recycled Tyre Rubber Modified Bitumens for Road Asphalt Mixtures: A Literature Review. Constr Build Mater. 2013, 49, 863-881. https://doi.org/10.1016/j.conbuildmat.2013.09.007
https://doi.org/10.1016/j.conbuildmat.2013.09.007

[91] Carpani, C.; Bocci, E.; Prosperi, E.; Bocci, M. Evaluation of the Rheological and Performance Behaviour of Bitumen Modified with Compounds Including Crumb Rubber from Waste Tires. Constr Build Mater. 2022, 361, 129679. https://doi.org/10.1016/j.conbuildmat.2022.129679
https://doi.org/10.1016/j.conbuildmat.2022.129679

[92] Qian, C.; Fan, W. Evaluation and Characterization of Properties of Crumb Rubber/SBS Modified Asphalt. Mater. Chem. Phys. 2020, 253, 123319. https://doi.org/10.1016/j.matchemphys.2020.123319
https://doi.org/10.1016/j.matchemphys.2020.123319

[93] Han, L.; Zheng, M.; Wang, C. Current Status and Development of Terminal Blend Tyre Rubber Modified Asphalt Constr Build Mater. 2016, 128, 399-409. https://doi.org/10.1016/j.conbuildmat.2016.10.080
https://doi.org/10.1016/j.conbuildmat.2016.10.080

[94] Bressi, S.; Fiorentini, N.; Huang, J.; Losa, M. Crumb Rubber Modifier in Road Asphalt Pavements: State of the Art and Statistics. Coatings 2019, 9, 384. https://doi.org/10.3390/coatings9060384
https://doi.org/10.3390/coatings9060384

[95] Singh, S. K.; Pandey, A.; Ravindranath, S. S. Effect of Additives on the Thermal Stability of SBS Modified Binders during Storage at Elevated Temperatures. Constr Build Mater. 2022, 314, 125609. https://doi.org/10.1016/j.conbuildmat.2021.125609
https://doi.org/10.1016/j.conbuildmat.2021.125609

[96] Kok, B. V.; Yalcin, B. F.; Yilmaz, M.; Yalcin, E. Performance Evaluation of Bitumen Modified with Styrene-Isoprene-Styrene and Crumb Rubber Compound. Constr Build Mater. 2022, 344, 128304. https://doi.org/10.1016/j.conbuildmat.2022.128304
https://doi.org/10.1016/j.conbuildmat.2022.128304

[97] Masson, J. F.; Collins, P.; Robertson, G., Woods, J. R.; Margeson, J. Thermodynamics, Phase Diagrams, and Stability of Bitumen-Polymer Blends. Energy Fuels 2003, 17, 714-724. https://doi.org/10.1021/ef0202687
https://doi.org/10.1021/ef0202687

[98] Chen, M.; Geng, J.; Xia, C.; He, L.; Liu, Z. A Review of Phase Structure of SBS Modified Asphalt: Affecting Factors, Analytical Methods, Phase Models and Improvements. Constr Build Mater. 2021, 294, 123610. https://doi.org/10.1016/j.conbuildmat.2021.123610
https://doi.org/10.1016/j.conbuildmat.2021.123610

[99] Erkuş, Y.; Kök, B. V. Comparison of Physical and Rheological Properties of Calcium Carbonate-Polypropylene Composite and SBS Modified Bitumen. Constr Build Mater. 2023, 366, 130196. https://doi.org/10.1016/j.conbuildmat.2022.130196
https://doi.org/10.1016/j.conbuildmat.2022.130196

[100] De Carcer, Í. A.; Masegosa, R. M.; Viñas, M. T.; Sanchez-Cabezudo, M.; Salom, C.; Prolongo, M. G.; Páez, A. Storage Stability of SBS/Sulfur Modified Bitumens at High Temperature: Influence of Bitumen Composition and Structure. Constr Build Mater. 2014, 52, 245-252. https://doi.org/10.1016/j.conbuildmat.2013.10.069
https://doi.org/10.1016/j.conbuildmat.2013.10.069

[101] Lu, X.; Isacsson, U. Compatibility and Storage Stability of Styrene-Butadiene-Styrene Copolymer Modified Bitumens. Mater Struct. 1997, 30, 618-626. https://doi.org/10.1007/BF02486904