Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater: A Review

Nazar Nahurskyi1, Myroslav Malovanyy1, Ihor Bordun1, Ewelina Szymczykiewicz2
Affiliation: 
1 Lviv Polytechnic National University 12, S. Bandery St., Lviv 79013, Ukraine 2 Czestochowa University of Technology 69, Dabrowskiego str., Czestochowa 42-201, Poland nazar.o.nahurskyi@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.170
AttachmentSize
PDF icon full_text.pdf1.5 MB
Abstract: 
The methods of wastewater treatment from heavy metal ions and dyes are analyzed, and the key advantages of powdered magnetically sensitive carbon nanocomposites as adsorbents are shown. Methods for selecting and preparing raw materials and activators for the synthesis of such nanocomposites are considered, and methods for synthesizing nanocomposites are analyzed. The properties, modeling of adsorption kinetics and isotherms, and efficiency of magnetic carbon nanocomposites for wastewater treatment from dyes and heavy metals are described.
References: 

[1] Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M., Alexis, F.; Guerrero, V. H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504
https://doi.org/10.1016/j.eti.2021.101504

[2] Vasiichuk, V.; Kurylets, O.; Nahurskyy, O.; Kuchera, Y.; Bukliv, R.; Kalymon, Y. Obtaining New Aluminium Water Clarification Coagulant from Spent Catalyst. Ecol. Eng. Environ. Technol. 2022, 23, 47-53. https://doi.org/10.12912/27197050/147147
https://doi.org/10.12912/27197050/147147

[3] Malovanyy, M. S.; Synelnikov, S. D.; Nagurskiy, O. A.; Soloviy, K. M.; Tymchuk, I. S. Utilization of sorted secondary PET waste-raw materials in the context of sustainable development of the modern city. In IOP Conf. Ser.: Mater. Sci. Eng. 2020, 907, 012067. https://doi.org/10.1088/1757-899X/907/1/012067
https://doi.org/10.1088/1757-899X/907/1/012067

[4] Garg, V. K.; Kumar, R.; Gupta, R. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes Pigm. 2004, 62, 1-10. https://doi.org/10.1016/j.dyepig.2003.10.016
https://doi.org/10.1016/j.dyepig.2003.10.016

[5] Verma, R.; Dwivedi, P. Heavy metal water pollution-A case study. Recent Research in Science and Technology 2013, 5, 98-99.

[6] Razzak, S. A.; Faruque, M. O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv. 2022, 7, 100168. https://doi.org/10.1016/j.envadv.2022.100168
https://doi.org/10.1016/j.envadv.2022.100168

[7] Moosavi, S.; Lai, C. W.; Gan, S.; Zamiri, G.; Akbarzadeh Pivehzhani, O.; Johan, M. R. Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 2020, 5, 20684-20697. https://doi.org/10.1021/acsomega.0c01905
https://doi.org/10.1021/acsomega.0c01905

[8] Nahurskyi, O.; Krylova, H.; Vasiichuk, V.; Kachan, S.; Nahursky, A.; Paraniak, N.; Sabadash, V.; Malovanyy, M. Utilization of Household Plastic Waste in Technologies with Final Biodegradation. Ecol. Eng. Environ. Technol. 2022, 23, 94-100. https://doi.org/10.12912/27197050/150234
https://doi.org/10.12912/27197050/150234

[9] Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A. P.; Kim, H. Y.; Joshi, M. K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. https://doi.org/10.1016/j.jece.2021.105688
https://doi.org/10.1016/j.jece.2021.105688

[10] Nagurskyy, O.; Krylova H.; Vasiichuk, V.; Kachan, S.; Dziurakh, Y.; Nahursky, A.; Paraniak, N. Safety Usage of Encapsulated Mineral Fertilizers Based on Polymeric Waste. Ecol. Eng. Environ. Technol. 2022, 23, 156-161. https://doi.org/10.12912/27197050/143139
https://doi.org/10.12912/27197050/143139

[11] Qasem, N. A.; Mohammed, R. H.; Lawal, D. U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water. 2021, 4, 36. https://doi.org/10.1038/s41545-021-00127-0
https://doi.org/10.1038/s41545-021-00127-0

[12] Tee, G. T.; Gok, X. Y.; Yong, W. F. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environ. Res. 2022, 212, 113248. https://doi.org/10.1016/j.envres.2022.113248
https://doi.org/10.1016/j.envres.2022.113248

[13] Sharma, A.; Mangla, D.; Chaudhry, S. A. Recent advances in magnetic composites as adsorbents for wastewater remediation. J. Environ. Manage. 2022, 306, 114483. https://doi.org/10.1016/j.jenvman.2022.114483
https://doi.org/10.1016/j.jenvman.2022.114483

[14] Bordun, I.; Vasylinych, T.; Malovanyy, M.; Sakalova, H.; Liubchak, L.; Luchyt, L. Study of adsorption of differently charged dyes by carbon adsorbents. Desalin. Water Treat. 2023, 288, 151-158. https://doi.org/10.5004/dwt.2023.29332
https://doi.org/10.5004/dwt.2023.29332

[15] Santhosh, C.; Daneshvar, E.; Tripathi, K. M.; Baltrėnas, P.; Kim, T., Baltrėnaitė, E.; Bhatnagar, A. Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr (VI) and Acid orange 7 dye from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 32874-32887. https://doi.org/10.1007/s11356-020-09275-1
https://doi.org/10.1007/s11356-020-09275-1

[16] Sivashankar, R.; Sathya, A. B.; Vasantharaj, K.; Sivasubramanian, V. Magnetic composite an environmental super adsorbent for dye sequestration-A review. Environ. Nanotechnol. Monit. Manage. 2014, 1, 36-49. https://doi.org/10.1016/j.enmm.2014.06.001
https://doi.org/10.1016/j.enmm.2014.06.001

[17] Soares, S. F.; Fernandes, T.; Trindade, T.; Daniel-da-Silva, A. L. Recent advances on magnetic biosorbents and their applications for water treatment. Environ. Chem. Lett. 2020, 18, 151-164. https://doi.org/10.1007/s10311-019-00931-8
https://doi.org/10.1007/s10311-019-00931-8

[18] Madhura, L.; Singh, S.; Kanchi, S.; Sabela, M.; Bisetty, K.; Inamuddin. Nanotechnology-based water quality management for wastewater treatment. Environ. Chem. Lett. 2019, 17, 65-121. https://doi.org/10.1007/s1031 1-018-0778-8
https://doi.org/10.1007/s10311-018-0778-8

[19] Sousa, F. L.; Daniel-da-Silva, A. L.; Silva, N. J. O.; Trindade, T. Bionanocomposites for magnetic removal of water pollutants. In Eco-friendly polymer nanocomposites: chemistry and applications, Vol 74; Springer, 2015; pp 279-310. https://doi.org/10.1007/978-81-322-2473-0_9
https://doi.org/10.1007/978-81-322-2473-0_9

[20] Mehta, D.; Mazumdar, S.; Singh, S. K. Magnetic adsorbents for the treatment of water/wastewater-a review. J. Water Process Eng. 2015, 7, 244-265. https://doi.org/10.1016/j.jwpe.2015.07.001
https://doi.org/10.1016/j.jwpe.2015.07.001

[21] Simeonidis, K.; Mourdikoudis, S.; Kaprara, E.; Mitrakas, M.; Polavarapu, L. Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ. Sci. Water Res. Technol. 2016, 2, 43-70. https://doi.org/10.1039/C5EW00152H
https://doi.org/10.1039/C5EW00152H

[22] Adeleye, A. S.; Conway, J. R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A. A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016, 286, 640-662. https://doi. org/10.1016/j.cej.2015.10.105
https://doi.org/10.1016/j.cej.2015.10.105

[23] Reddy, D. H. K.; Yun, Y. S. Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 2016, 315, 90-111. https://doi.org/10.1016/j.ccr.2016.01.012
https://doi.org/10.1016/j.ccr.2016.01.012

[24] Behrens, S.; Appel, I. Magnetic nanocomposites. Curr. Opin. Biotechnol. 2016, 39, 89-96. https://doi.org/10.1016/J.COPBI O.2016.02.005
https://doi.org/10.1016/j.copbio.2016.02.005

[25] Abdullah, N. H.; Shameli, K.; Abdullah, E. C.; Abdullah, L. C. Solid matrices for fabrication of magnetic iron oxide nanocomposites: synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Composites, Part B 2019, 162, 538-568. https://doi. org/10.1016/j.compositesb.2018.12.075
https://doi.org/10.1016/j.compositesb.2018.12.075

[26] Khan, S. T.; Malik, A. Engineered nanomaterials for water decontamination and purification: From lab to products. J. Hazard. Mater. 2019, 363, 295-308. https://doi.org/10.1016/j.jhazmat.2018.09.091
https://doi.org/10.1016/j.jhazmat.2018.09.091

[27] Siddiqui, M. T. H.; Nizamuddin, S.; Baloch, H. A.; Mubarak, N. M.; Al-Ali, M.; Mazari; S. A.; Bhutto, A. W.; Abro A.; Srinivasan, M.; Griffin, G. Fabrication of advance magnetic carbon nano-materials and their potential applications: a review. J. Environ. Chem. Eng. 2019, 7, 102812. https://doi.org/10.1016/j.jece.2018.102812
https://doi.org/10.1016/j.jece.2018.102812

[28] Rudakov, G. A.; Tsiberkin, K. B.; Ponomarev, R. S.; Henner, V. K.; Ziolkowska, D. A.; Jasinski, J. B.; Sumanasekera, G. Magnetic properties of transition metal nanoparticles enclosed in carbon nanocages. J. Magn. Magn. Mater. 2019, 472, 34-39. https://doi.org/10.1016/j.jmmm.2018.10.016
https://doi.org/10.1016/j.jmmm.2018.10.016

[29] Bordun, I.; Chwastek, K.; Całus, D.; Chabecki, P.; Ivashchyshyn, F.; Kohut, Z.; Borysiuk, A.; Kulyk, Y. Comparison of structure and magnetic properties of Ni/C composites synthesized from wheat straw by different methods. Appl, Sci. 2021, 11, 10031. https://doi.org/10.3390/app112110031
https://doi.org/10.3390/app112110031

[30] Meng, F.; Yang, B.; Wang, B.; Duan, S.; Chen, Z.; Ma, W. Novel dendrimer like magnetic biosorbent based on modified orange peel waste: Adsorption-reduction behavior of arsenic. ACS Sustainable Chem. Eng. 2017, 5, 9692-9700. https://doi.org/10.1021/acssuschemeng.7b01273
https://doi.org/10.1021/acssuschemeng.7b01273

[31] Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B. Nanomaterials-enabled water and wastewater treatment. NanoImpact 2016, 3, 22-39. https://doi. org/10.1016/j.impact.2016.09.004
https://doi.org/10.1016/j.impact.2016.09.004

[32] Wang, T.; Ai, S.; Zhou, Y.; Luo, Z.; Dai, C.; Yang, Y.; Zhang, J.; Huang, H.; Luo, S.; Luo, L. Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. J. Environ. Chem. Eng. 2018, 6, 6468-6478. https://doi.org/10.1016/j.jece.2018.10.014
https://doi.org/10.1016/j.jece.2018.10.014

[33] Chen, L.; Zhou, C. H.; Fiore, S.; Tong, D. S.; Zhang, H.; Li, C. S.; Ji, S. F.; Yu, W. H. Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications. Appl. Clay Sci. 2016, 127, 143-163. https://doi.org/10.1016/j.clay.2016.04.009
https://doi.org/10.1016/j.clay.2016.04.009

[34] Baghdadi, M.; Ghaffari, E.; & Aminzadeh, B. Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: adsorption and sedimentation kinetic studies. J. Environ. Chem. Eng. 2016, 4, 3309-3321. https://doi.org/10.1016/j.jece.2016.06.034
https://doi.org/10.1016/j.jece.2016.06.034

[35] Donia, A. M.; Atia, A. A.; Abouzayed, F. I. Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem. Eng. J. 2012, 191, 22-30. https://doi.org/10.1016/j.cej.2011.08.034
https://doi.org/10.1016/j.cej.2011.08.034

[36] Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. J. Hazard. Mater. 2014, 278, 211-220. https://doi. org/10.1016/j.jhazmat.2014.05.075
https://doi.org/10.1016/j.jhazmat.2014.05.075

[37] Zhou, L.; Ji, L.; Ma, P. C.; Shao, Y.; Zhang, H.; Gao, W.; Li, Y. Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb (II). J. Hazard. Mater. 2014, 265, 104-114. https://doi. org/10.1016/j.jhazmat.2013.11.058
https://doi.org/10.1016/j.jhazmat.2013.11.058

[38] Masoumi, A.; Hemmati, K.; Ghaemy, M. Recognition and selective adsorption of pesticides by superparamagnetic molecularly imprinted polymer nanospheres. RSC adv. 2016, 6, 49401-49410. https://doi.org/10.1039/c6ra05873f
https://doi.org/10.1039/C6RA05873F

[39] Kheshti, Z.; Hassanajili, S. Novel multifunctional mesoporous microsphere with high surface area for removal of zinc ion from aqueous solution: preparation and characterization. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1613-1626. https://doi.org/10.1007/ s10904-017-0621-x
https://doi.org/10.1007/s10904-017-0621-x

[40] Li, R.; An, Q. D.; Mao, B. Q.; Xiao, Z. Y.; Zhai, S. R.; Shi, Z. PDA-meditated green synthesis of amino-modified, multifunctional magnetic hollow composites for Cr(VI) efficient removal. J. Taiwan Inst. Chem. Eng. 2017, 80, 596-606. https://doi.org/10.1016/j.jtice.2017.08.036
https://doi.org/10.1016/j.jtice.2017.08.036

[41] Langeroudi, M. P.; Binaeian, E. Tannin-APTES modified Fe3O4 nanoparticles as a carrier of Methotrexate drug: kinetic, isotherm and thermodynamic studies. Mater. Chem. Phys. 2018, 218, 210-217. https://doi.org/10.1016/j.matchemphy s.2018.07.044
https://doi.org/10.1016/j.matchemphys.2018.07.044

[42] Marcelo, L. R.; de Gois, J. S.; da Silva, A. A.; Cesar, D. V. Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: a review. Environ. Chem. Lett. 2021, 19, 1229-1274. https://doi.org/10.1007/s10311-020-01134-2
https://doi.org/10.1007/s10311-020-01134-2

[43] Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 2018, 356, 147-164. https://doi.org/10.1016/j.ccr.2017.11.003
https://doi.org/10.1016/j.ccr.2017.11.003

[44] Nadar, S. S.; Varadan, N.; Suresh, S.; Rao, P.; Ahirrao, D. J.; Adsare, S. Recent progress in nanostructured magnetic framework composites (MFCs): synthesis and applications. J. Taiwan Inst. Chem. Eng. 2018, 91, 653-677. https://doi.org/10.1016/j.jtice.2018.06.029
https://doi.org/10.1016/j.jtice.2018.06.029

[45] Li, N.; Jiang, H. L.; Wang, X.; Wang, X.; Xu, G.; Zhang, B.; Wang, L.; Zhao, R. S.; Lin, J. M. Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC, Trends Anal. Chem. 2018, 102, 60-74. https://doi.org/10.1016/j. trac.2018.01.009
https://doi.org/10.1016/j.trac.2018.01.009

[46] Soloviy, C.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, magnetic and adsorption characteristics of magnetically susceptible carbon sorbents based on natural raw materials. J. Water Land Dev. 2020, 47, 160-168. https://doi.org/10.24425/jwld.2020.135043
https://doi.org/10.24425/jwld.2020.135043

[47] Reynel-Ávila, H. E.; Camacho-Aguilar, K. I.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; González-Ponce, H. A.; Trejo-Valencia, R. Engineered magnetic carbon-based adsorbents for the removal of water priority pollutants: an overview. Adsorpt. Sci. Technol. 2021, 1-41. https://doi.org/10.1155/2021/9917444
https://doi.org/10.1155/2021/9917444

[48] Azam, K.; Raza, R.; Shezad, N.; Shabir, M.; Yang, W.; Ahmad, N.; Shafiq, I.; Akhter, P.; Razzaq, A.; Hussain, M. Development of recoverable magnetic mesoporous carbon adsorbent for removal of methyl blue and methyl orange from wastewater. J. Environ. Chem. Eng. 2020, 8, 104220. https://doi.org/10.1016/j.jece.2020.104220
https://doi.org/10.1016/j.jece.2020.104220

[49] Astuti, W.; Sulistyaningsih, T.; Kusumastuti, E.; Thomas, G. Y. R. S.; Kusnadi, R. Y. Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour. Technol. 2019, 287, 121426. https://doi.org/10.1016/j.biortech.2019.121426
https://doi.org/10.1016/j.biortech.2019.121426

[50] Nejadshafiee, V.; Islami, M. R. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater. Sci. Eng., C. 2019, 101, 42-52. https://doi.org/10.1016/j.msec.2019.03.081
https://doi.org/10.1016/j.msec.2019.03.081

[51] Chen, Y.; Liu, Y.; Li, Y.; Chen, Y.; Wu, Y.; Li, H.; Wang, S.; Peng, Z.; Xu, R.; Zeng, Z. Novel magnetic pomelo peel biochar for enhancing Pb (II) and Cu (II) adsorption: performance and mechanism. Water Air Soil Pollut. 2020, 231, 404. https://doi.org/10.1007/s11270-020-04788-4
https://doi.org/10.1007/s11270-020-04788-4

[52] Bordun, I.; Szymczykiewicz, E. Synthesis and Electrochemical Properties of Fe3O4/C Nanocomposites for Symmetric Supercapacitors. Appl. Sci. 2024, 14, 677. https://doi.org/10.3390/app14020677
https://doi.org/10.3390/app14020677

[53] Acosta, R.; Nabarlatz, D.; Sánchez-Sánchez, A.; Jagiello, J.; Gadonneix, P.; Celzard, A.; Fierro, V. Adsorption of Bisphenol A on KOH-activated tyre pyrolysis char. J. Environ. Chem. Eng. 2018, 6, 823-833. https://doi.org/10.1016/j.jece.2018.01.002
https://doi.org/10.1016/j.jece.2018.01.002

[54] Zúñiga-Muro, N. M.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; Duran-Valle, C. J.; Silvestre-Albero, J.; Reynel-Avila, H. E.; Tapia-Picazo, J. C. Recycling of Tetra pak wastes via pyrolysis: Characterization of solid products and application of the resulting char in the adsorption of mercury from water. J. Cleaner Prod. 2021, 291, 125219. https://doi.org/10.1016/j.jclepro.2020.125219
https://doi.org/10.1016/j.jclepro.2020.125219

[55] Singh, E.; Kumar, A.; Khapre, A.; Saikia, P.; Shukla, S. K.; Kumar, S. Efficient removal of arsenic using plastic waste char: Prevailing mechanism and sorption performance. J. Water Process Eng. 2020, 33, 101095. https://doi.org/10.1016/j.jwpe.2019.101095
https://doi.org/10.1016/j.jwpe.2019.101095

[56] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15, 239-246. https://doi.org/10.23939/chcht15.02.239
https://doi.org/10.23939/chcht15.02.239

[57] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Shapoval, P.; Nagurskyy, A. Thermooxidative Regeneration of used Mineral Motor Oils. Chem. Chem. Technol. 2020, 14, 129-134. https://doi.org/10.23939/chcht14.01.129
https://doi.org/10.23939/chcht14.01.129

[58] Chen, Y.; Zhu, Y.; Wang, Z.; Li, Y.; Wang, L.; Ding, L.; Gao, X.; Ma, Y.; Guo, Y. Application studies of activated carbon derived from rice husks produced by chemical-thermal process-A review. Adv. Colloid Interface Sci. 2011, 163, 39-52. https://doi.org/10.1016/j.cis.2011.01.006
https://doi.org/10.1016/j.cis.2011.01.006

[59] Noor, N. M.; Othman, R.; Mubarak, N. M.; Abdullah, E. C. Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. J. Taiwan Inst. Chem. Eng. 2017, 78, 168-177. https://doi.org/10.1016/j.jtice.2017.05.023
https://doi.org/10.1016/j.jtice.2017.05.023

[60] Fakkaew, K.; Koottatep, T.; Polprasert, C. Effects of hydrolysis and carbonization reactions on hydrochar production. Bioresour. Technol. 2015, 192, 328-334. https://doi.org/10.1016/j.biortech.2015.05.091
https://doi.org/10.1016/j.biortech.2015.05.091

[61] Takaya, C. A.; Parmar, K. R.; Fletcher, L. A.; Ross, A. B. Biomass-derived carbonaceous adsorbents for trapping ammonia. Agriculture 2019, 9, 16. https://doi.org/10.3390/agriculture9010016
https://doi.org/10.3390/agriculture9010016

[62] Azzaz, A. A.; Khiari, B.; Jellali, S.; Ghimbeu, C. M.; Jeguirim, M. Hydrochars production, characterization and application for wastewater treatment: A review. Renewable Resour. J. 2020, 127, 109882. https://doi.org/10.1016/j.rser.2020.109882
https://doi.org/10.1016/j.rser.2020.109882

[63] Yu, X.; Liu, S.; Lin, G.; Yang, Y.; Zhang, S.; Zhao, H.; Zheng, C.; Gao, X. KOH-activated hydrochar with engineered porosity as sustainable adsorbent for volatile organic compounds. Colloids Surf., A. 2020, 588, 124372. https://doi.org/10.1016/j.colsurfa.2019.124372
https://doi.org/10.1016/j.colsurfa.2019.124372

[64] Abdullah, R. F.; Rashid, U.; Ibrahim, M. L.; Hazmi, B.; Alharthi, F. A.; Nehdi, I. A. Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil. Renewable Sustainable Energy Rev. 2021, 137, 110638. https://doi.org/10.1016/j.rser.2020.110638
https://doi.org/10.1016/j.rser.2020.110638

[65] Cai, W.; Wei, J.; Li, Z.; Liu, Y.; Zhou, J.; Han, B. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull. Colloids Surf. A. 2019, 563, 102-111. https://doi.org/10.1016/j.colsurfa.2018.11.062
https://doi.org/10.1016/j.colsurfa.2018.11.062

[66] Kazak, O.; Eker, Y. R.; Bingol, H.; Tor, A. Novel preparation of activated carbon by cold oxygen plasma treatment combined with pyrolysis. Chem. Eng. J. 2017, 325, 564-575. https://doi.org/10.1016/j.cej.2017.05.107
https://doi.org/10.1016/j.cej.2017.05.107

[67] Guo, J.; Lua, A. C. Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation. Carbon. 2000, 38, 1985-1993. https://doi.org/10.1016/S0008-6223(00)00046-4
https://doi.org/10.1016/S0008-6223(00)00046-4

[68] Liu, W. J.; Tian, K.; He, Y. R.; Jiang, H.; Yu, H. Q. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage. Environ. Sci. Technol. 2014, 48, 13951-13959. https://doi.org/10.1021/es504184c
https://doi.org/10.1021/es504184c

[69] Zhu, X.; Qian, F.; Liu, Y.; Matera, D.; Wu, G.; Zhang, S.; Chen, J. Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: an overlooked influence. Carbon. 2016, 99, 338-347. https://doi.org/10.1016/j.carbon.2015.12.044
https://doi.org/10.1016/j.carbon.2015.12.044

[70] Theydan, S. K.; Ahmed, M. J. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. J. Anal. Appl. Pyrolysis. 2012, 97, 116-122. https://doi.org/10.1016/j.jaap.2012.05.008
https://doi.org/10.1016/j.jaap.2012.05.008

[71] Oliveira, L. C.; Pereira, E.; Guimaraes, I. R.; Vallone, A.; Pereira, M.; Mesquita, J. P.; Sapag, K. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J. Hazard. Mater. 2009, 165, 87-94. https://doi.org/10.1016/j.jhazmat.2008.09.064
https://doi.org/10.1016/j.jhazmat.2008.09.064

[72] Nistor, M. A.; Muntean, S. G.; Ianoș, R.; Racoviceanu, R.; Ianași, C.; Cseh, L. Adsorption of anionic dyes from wastewater onto magnetic nanocomposite powders synthesized by combustion method. Appl. Sci. 2021, 11, 9236. https://doi.org/10.3390/app11199236
https://doi.org/10.3390/app11199236

[73] Ianoş, R.; Păcurariu, C.; Muntean, S. G.; Muntean, E.; Nistor, M. A.; Nižňanský, D. Combustion synthesis of iron oxide/carbon nanocomposites, efficient adsorbents for anionic and cationic dyes removal from wastewaters. J. Alloys Compd. 2018, 741, 1235-1246. https://doi.org/10.1016/j.jallcom.2018.01.240
https://doi.org/10.1016/j.jallcom.2018.01.240

[74] Li, Y.; Zimmerman, A. R.; He, F.; Chen, J.; Han, L.; Chen, H.; Han, L.; Chen, H.; Hu, X.; Gao, B. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Sci. Total Environ. 2020, 722, 137972. https://doi.org/10.1016/j.scitotenv.2020.137972
https://doi.org/10.1016/j.scitotenv.2020.137972

[75] Tang, S. C.; Lo, I. M. Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 2013, 47, 2613-2632. https://doi.org/10.1016/j.watres.2013.02.039
https://doi.org/10.1016/j.watres.2013.02.039

[76] Zhang, X.; Lv, L.; Qin, Y.; Xu, M.; Jia, X.; Chen, Z. Removal of aqueous Cr (VI) by a magnetic biochar derived from Melia azedarach wood. Bioresour. Technol. 2018, 256, 1-10. https://doi.org/10.1016/j.biortech.2018.01.145
https://doi.org/10.1016/j.biortech.2018.01.145

[77] Dong, C. D.; Chen, C. W.; Hung, C. M. Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresour. Technol. 2017, 245, 188-195. https://doi.org/10.1016/j.biortech.2017.08.204
https://doi.org/10.1016/j.biortech.2017.08.204

[78] Li, C.; Wang, X.; Meng, D.; Zhou, L. Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int. J. Biol. Macromol. 2018, 107, 1871-1878. https://doi.org/10.1016/j.ijbiomac.2017.10.058
https://doi.org/10.1016/j.ijbiomac.2017.10.058

[79] Cazetta, A. L.; Pezoti, O.; Bedin, K. C.; Silva, T. L.; Paesano Junior, A.; Asefa, T.; Almeida, V. C. Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustainable Chem. Eng. 2016, 4, 1058-1068. https://doi.org/10.1021/acssuschemeng.5b01141
https://doi.org/10.1021/acssuschemeng.5b01141

[80] Adeogun, A. I.; Akande, J. A.; Idowu, M. A.; Kareem, S. O. Magnetic tuned sorghum husk biosorbent for effective removal of cationic dyes from aqueous solution: isotherm, kinetics, thermodynamics and optimization studies. Appl. Water Sci. 2019, 9, 160. https://doi.org/10.1007/s13201-019-1037-2
https://doi.org/10.1007/s13201-019-1037-2

[81] Vahdati-Khajeh, S.; Zirak, M.; Tejrag, R. Z.; Fathi, A.; Lamei, K.; Eftekhari-Sis, B. Biocompatible magnetic N-rich activated carbon from egg white biomass and sucrose: Preparation, characterization and investigation of dye adsorption capacity from aqueous solution. Surf. Interfaces. 2019, 15, 157-165. https://doi.org/10.1016/j.surfin.2019.03.003
https://doi.org/10.1016/j.surfin.2019.03.003

[82] Salem, S.; Teimouri, Z.; Salem, A. Fabrication of magnetic activated carbon by carbothermal functionalization of agriculture waste via microwave-assisted technique for cationic dye adsorption. Adv. Powder Technol. 2020, 31, 4301-4309. https://doi.org/10.1016/j.apt.2020.09.007
https://doi.org/10.1016/j.apt.2020.09.007

[83] Jiang, W.; Zhang, L.; Guo, X.; Yang, M.; Lu, Y.; Wang, Y.; Zheng, Y.; Wei, G. Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Environ. Technol. 2019, 42, 337-350. https://doi.org/10.1080/09593330.2019.1627425
https://doi.org/10.1080/09593330.2019.1627425

[84] Vieira, L. H. S.; Sabino, C. M. S.; Júnior, F. H. S.; Rocha, J. S.; Castro, M. O.; Alencar, R. S.; da Costa, l. S.; Viana, B. C.; de Paula, A. J.; Ferreira, O. P. et al. Strategic design of magnetic carbonaceous nanocomposites and its application as multifunctional adsorbent. Carbon 2020, 161, 758-771. https://doi.org/10.1016/j.carbon.2020.01.089
https://doi.org/10.1016/j.carbon.2020.01.089

[85] Eltaweil, A. S.; Mohamed, H. A.; Abd El-Monaem, E. M.; El-Subruiti, G. M. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Adv. Powder Technol. 2020, 31, 1253-1263. https://doi.org/10.1016/j.apt.2020.01.005
https://doi.org/10.1016/j.apt.2020.01.005

[86] Oladipo, A. A.; Ifebajo, A. O. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: two-stage adsorber analysis. J. Environ. Manage. 2018, 209, 9-16. https://doi.org/10.1016/j.jenvman.2017.12.030
https://doi.org/10.1016/j.jenvman.2017.12.030

[87] Geng, J.; Chang, J. Synthesis of magnetic Forsythia suspensa leaf powders for removal of metal ions and dyes from wastewater. J. Environ. Chem. Eng. 2020, 8, 104224. https://doi.org/10.1016/j.jece.2020.104224
https://doi.org/10.1016/j.jece.2020.104224

[88] Li, Y.; Zhang, X.; Zhang, P.; Liu, X.; Han, L. Facile fabrication of magnetic bio-derived chars by co-mixing with Fe3O4 nanoparticles for effective Pb2+ adsorption: properties and mechanism. J. Cleaner Prod. 2020, 262, 121350. https://doi.org/10.1016/j.jclepro.2020.121350
https://doi.org/10.1016/j.jclepro.2020.121350

[89] Pan, J.; Gao, B.; Wang, S.; Guo, K.; Xu, X.; Yue, Q. Waste-to-resources: Green preparation of magnetic biogas residues-based biochar for effective heavy metal removals. Sci. Total Environ. 2020, 737, 140283. https://doi.org/10.1016/j.scitotenv.2020.140283
https://doi.org/10.1016/j.scitotenv.2020.140283

[90] Maneechakr, P.; Mongkollertlop, S. Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. J. Environ. Chem. Eng. 2020, 8, 104467. https://doi.org/10.1016/j.jece.2020.104467
https://doi.org/10.1016/j.jece.2020.104467

[91] Hou, T.; Yan, L.; Li, J.; Yang, Y.; Shan, L.; Meng, X.; Li, X.; Zhao, Y. Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent. Chem. Eng. J. 2020, 384, 123331. https://doi.org/10.1016/j.cej.2019.123331
https://doi.org/10.1016/j.cej.2019.123331

[92] Oladipo, A. A.; Ahaka, E. O.; Gazi, M. High adsorptive potential of calcined magnetic biochar derived from banana peels for Cu2+, Hg2+, and Zn2+ ions removal in single and ternary systems. Environ. Sci. Pollut. Res. 2019, 26, 31887-31899. https://doi.org/10.1007/s11356-019-06321-5
https://doi.org/10.1007/s11356-019-06321-5

[93] Altaf, A. R.; Teng, H.; Zheng, M.; Ashraf, I.; Arsalan, M.; Rehman, A. U.; Gang, l.; Pengjie, W.; Yongqiang, R.; Xiaoyu, L. One-step synthesis of renewable magnetic tea-biochar derived from waste tea leaves for the removal of Hg0 from coal-syngas. J. Environ. Chem. Eng. 2021, 9, 105313. https://doi.org/10.1016/j.jece.2021.105313
https://doi.org/10.1016/j.jece.2021.105313

[94] Wang, H.; Liu, Y.; Ifthikar, J.; Shi, L.; Khan, A.; Chen, Z.; Chen, Z. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment. Bioresour. Technol. 2018, 256, 269-276. https://doi.org/10.1016/j.biortech.2018.02.019
https://doi.org/10.1016/j.biortech.2018.02.019

[95] Demarchi, C. A.; Michel, B. S.; Nedelko, N.; Ślawska-Waniewska, A.; Dłużewski, P.; Kaleta, A.; Minikayev, R.; Strachowski, T.; Lipińska, L.; Dal Magro, J.; et al. Preparation, characterization, and application of magnetic activated carbon from termite feces for the adsorption of Cr (VI) from aqueous solutions. Powder Technol. 2019, 354, 432-441. https://doi.org/10.1016/j.powtec.2019.06.020
https://doi.org/10.1016/j.powtec.2019.06.020

[96] Qiao, K.; Tian, W.; Bai, J.; Zhao, J.; Du, Z.; Song, T.; Chu, M.; Wang, L.; Xie, W. Synthesis of floatable magnetic iron/biochar beads for the removal of chromium from aqueous solutions. Environ. Technol. Innovation. 2020, 19, 100907. https://doi.org/10.1016/j.eti.2020.100907
https://doi.org/10.1016/j.eti.2020.100907

[97] Aguayo-Villarreal, I. A.; Cortes-Arriagada, D.; Rojas-Mayorga, C. K.; Pineda-Urbina, K.; Muñiz-Valencia, R.; Gonzalez, J. Importance of the interaction adsorbent-adsorbate in the dyes adsorption process and DFT modeling. J. Mol. Struct. 2020, 1203, 127398. https://doi.org/10.1016/j.molstruc.2019.127398
https://doi.org/10.1016/j.molstruc.2019.127398

[98] Ali, I.; Peng, C.; Khan, Z. M.; Sultan, M.; Naz, I. Green synthesis of phytogenic magnetic nanoparticles and their applications in the adsorptive removal of crystal violet from aqueous solution. Arabian J. Sci. Eng. 2018, 43, 6245-6259. https://doi.org/10.1007/s13369-018-3441-6
https://doi.org/10.1007/s13369-018-3441-6

[99] El-Gamal, S. M. A.; Amin, M. S.; Ahmed, M. A. Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel's cement nanoparticles. J. Environ. Chem. Eng. 2015, 3, 1702-1712. https://doi.org/10.1016/j.jece.2015.06.022
https://doi.org/10.1016/j.jece.2015.06.022

[100] Mtshatsheni, K. N. G.; Ofomaja, A. E.; Naidoo, E. B. Synthesis and optimization of reaction variables in the preparation of pinemagnetite composite for removal of methylene blue dye. S. Afr. J. Chem. Eng. 2019, 29, 33-41. https://doi.org/10.1016/j.sajce.2019.05.002
https://doi.org/10.1016/j.sajce.2019.05.002

[101] Nguyen, V. H.; Van, H. T.; Nguyen, V. Q.; Dam, X. V.; Hoang, L. P.; Ha, L. T. Magnetic Fe3O4 nanoparticle biochar derived from pomelo peel for reactive Red 21 adsorption from aqueous solution. J. Chem. 2020, 3080612. https://doi.org/10.1155/2020/3080612
https://doi.org/10.1155/2020/3080612

[102] Akpomie, K. G.; Conradie, J. Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. Arabian J. Chem. 2020, 13, 7115-7131. https://doi.org/10.1016/j.arabjc.2020.07.017
https://doi.org/10.1016/j.arabjc.2020.07.017

[103] Olusegun, S. J.; Freitas, E. T.; Lara, L. R.; Mohallem, N. D. Synergistic effect of a spinel ferrite on the adsorption capacity of nano bio-silica for the removal of methylene blue. Environ. Technol. 2021, 42, 2163-2176. https://doi.org/10.1080/09593330.2019.1694083
https://doi.org/10.1080/09593330.2019.1694083

[104] Altıntıg, E.; Altundag, H.; Tuzen, M.; Sarı, A. Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem. Eng. Res. Des. 2017, 122, 151-163. https://doi.org/10.1016/j.cherd.2017.03.035
https://doi.org/10.1016/j.cherd.2017.03.035

[105] Zuhara, S.; Pradhan, S.; Zakaria, Y.; Shetty, A. R.; McKay, G. Removal of methylene blue from water using magnetic GTL-derived biosolids: Study of adsorption isotherms and kinetic models. Molecules 2023, 28, 1511. https://doi.org/10.3390/molecules28031511
https://doi.org/10.3390/molecules28031511

[106] Jia, Z.; Wu, L.; Zhang, D.; Han, C.; Li, M.; Wei, R. Adsorption behaviors of magnetic carbon derived from wood tar waste for removal of methylene blue dye. Diamond Relat. Mater. 2022, 130, 109408. https://doi.org/10.1016/j.diamond.2022.109408.
https://doi.org/10.1016/j.diamond.2022.109408

[107] Arancibia-Miranda, N.; Baltazar, S. E.; García, A.; Muñoz-Lira, D.; Sepúlveda, P.; Rubio, M. A.; Altbir, D. Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 2016, 301, 371-380. https://doi.org/10.1016/j.jhazm at.2015.09.007
https://doi.org/10.1016/j.jhazmat.2015.09.007

[108] Xu, P.; Zeng, G. M.; Huang, D. L.; Feng, C. L.; Hu, S.; Zhao, M. H.; Lai, C.; Wei Z.; Huang, C.; Xie, G. X. et al. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 2012, 424, 1-10. https://doi.org/10.1016/j.scitotenv.2012.02.023
https://doi.org/10.1016/j.scitotenv.2012.02.023

[109] Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y. S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem. Eng. J. 2019, 366, 608-621. https://doi.org/10.1016/j.cej.2019.02.119
https://doi.org/10.1016/j.cej.2019.02.119

[110] Jafari Kang, A.; Baghdadi, M.; Pardakhti, A. Removal of cadmium and lead from aqueous solutions by magnetic acid-treated activated carbon nanocomposite. Desalin. Water Treat. 2016, 57, 18782-18798. https://doi.org/10.1080/19443994.2015.1095123
https://doi.org/10.1080/19443994.2015.1095123

[111] Huong, P. T. L.; Lan, H.; An, T. T.; Van Quy, N.; Tuan, P. A.; Alonso, J.; Phan, M. H.; Le, A. T. Magnetic iron oxide-carbon nanocomposites: Impacts of carbon coating on the As (V) adsorption and inductive heating responses. J. Alloys Compd. 2018, 739, 139-148. https://doi.org/10.1016/j.jallcom.2017.12.178
https://doi.org/10.1016/j.jallcom.2017.12.178

[112] Chen, M.; Shao, L. L.; Li, J. J.; Pei, W. J.; Chen, M. K.; Xie, X. H. One-step hydrothermal synthesis of hydrophilic Fe3O4/carbon composites and their application in removing toxic chemicals. RSC Adv. 2016, 6, 35228-35238. https://doi. org/10.1039/c6ra01408a
https://doi.org/10.1039/C6RA01408A

[113] Zhang, J.; Zhai, S.; Li, S.; Xiao, Z.; Song, Y.; An, Q.; Tian, G. Pb (II) removal of Fe3O4@ SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel process. Chem. Eng. J. 2013, 215, 461-471. https://doi. org/10.1016/j.cej.2012.11.043
https://doi.org/10.1016/j.cej.2012.11.043

[114] Ren, Y.; Abbood, H. A.; He, F.; Peng, H; Huang, K. Magnetic EDTA-modified chitosan/SiO2/ Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 2013, 226, 300-311. https://doi.org/10.1016/j.cej.2013.04.059
https://doi.org/10.1016/j.cej.2013.04.059

[115] Gutha, Y; Munagapati, V. S. Removal of Pb (II) ions by using magnetic chitosan-4-((pyridin-2-ylimino) methyl) benzaldehyde Schiff's base. Int. J. Biol. Macromol. 2016, 93, 408-417. https://doi. org/10.1016/j.ijbiomac.2016.08.084
https://doi.org/10.1016/j.ijbiomac.2016.08.084

[116] Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1-10. https://doi.org/10.1016/j. cej.2015.06.043
https://doi.org/10.1016/j.cej.2015.06.043

[117] Zhao, D.; Gao, X.; Wu, C.; Xie, R.; Feng, S.; Chen, C. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr (VI). Appl. Surf. Sci. 2016, 384, 1-9. https://doi. org/10.1016/j.apsusc.2016.05.022
https://doi.org/10.1016/j.apsusc.2016.05.022

[118] Hosseinzadeh, H.; Ramin, S. Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. Int. J. Biol. Macromol. 2018, 113, 859-868. https://doi.org/10.1016/j.ijbiomac.2018.03.028
https://doi.org/10.1016/j.ijbiomac.2018.03.028

[119] Pipíška, M.; Zarodňanská, S.; Horník, M.; Ďuriška, L.; Holub, M.; Šafařík, I. Magnetically functionalized moss biomass as biosorbent for efficient Co2+ ions and thioflavin T removal. Materials 2020, 13, 3619. https://doi.org/10.3390/ma13163619
https://doi.org/10.3390/ma13163619