Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Experimental Evaluation of an Empirical Equation in a Gaseous Flow

Arlitt Amy Lozano Povis1, Elías Adrián Sanabria Perez1
Affiliation: 
1 Universidad Nacional del Centro del Perú, Facultad de Ingeniería Química Mariscal Castilla 3909, Huancayo, Perú lozanopovisarlitt@gmail.com
DOI: 
https://doi.org/10.23939/chcht18.01.057
AttachmentSize
PDF icon full_text.pdf749.83 KB
Abstract: 
In this paper, the estimation error of Dr. Pole's empirical equation was evaluated using copper pipes of different diameters (0.00953, 0.0127, 0.01588 m), under different flow pressure conditions (0, 300, 500, 1000, 1500, 2000, 2500, 3000 L/h). To carry out the experiments, the following instruments were used: an air compressor, 2 flow valves, a needle valve, a gas rotameter, copper piping, pressure gauges and transmitters, a Norus data logger with 4 to 20 mA output signals, thermocouples, and thermoresistors. They allow us to establish that the air pressure drops when the flowing through the pipes is higher (380 Pa) for small diameter pipes (0.00953 m), compared to larger diameters (0.01270 m and 0.01588 m) with a maximum of 54 and 28 Pa, respectively; and in relation to the flow rates, the pressure drop increases with a quadratic trend with respect to the flow rate. Finally, the residual errors that the empirical equation has in the pressure drop calculations, in general terms, are not of great magnitude.
References: 

[1] Song, G.; Li, Y.; Sum, A. K. Characterization of the Coupling between Gas Hydrate Formation and Multiphase Flow Conditions. J. Nat. Gas Sci. Eng. 2020, 83, 103567. https://doi.org/10.1016/J.JNGSE.2020.103567
https://doi.org/10.1016/j.jngse.2020.103567

[2] Pinchuk, S.; Galchenko, G.; Simonov, A.; Masakovskaya, L.; Roslyk, I. Complex Corrosion Protection of Tubing in Gas Wells. Chem. Chem. Technol. 2018, 12, 529-532. https://doi.org/10.23939/chcht12.04.529
https://doi.org/10.23939/chcht12.04.529

[3] Paolinelli, L. D.; Nesic, S. Calculation of Mass Transfer Coefficients for Corrosion Prediction in Two-Phase Gas-Liquid Pipe Flow. Int. J. Heat Mass Transf. 2021, 165, 120689. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.120689
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120689

[4] Bannikov, L.; Miroshnichenko, D.; Pylypenko, O.; Pyshyev, S.; Fedevych, O.; Meshchanin, V. Coke Quenching Plenum Equipment Corrosion and Its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production. Chem. Chem. Technol. 2022, 16, 328-336. https://doi.org/10.23939/chcht16.02.328
https://doi.org/10.23939/chcht16.02.328

[5] Löhr, L.; Houben, R.; Moser, A. Optimal Power and Gas Flow for Large-Scale Transmission Systems. Electr. Power Syst. Res. 2020, 189, 106724. https://doi.org/10.1016/J.EPSR.2020.106724
https://doi.org/10.1016/j.epsr.2020.106724

[6] Xu, L.; Zhu, F.; Zha, F.; Chu, C.; Yang, C. Effects of Gas Pressure and Confining Pressure on Gas Flow Behavior in Saturated Cohesive Soils with Low Permeability. Eng. Geol. 2019, 260, 105241. https://doi.org/10.1016/J.ENGGEO.2019.105241
https://doi.org/10.1016/j.enggeo.2019.105241

[7] Martínez-Aguilar, J.; González-Gago, C.; Castaños-Martínez, E.; Muñoz, J.; Calzada, M. D.; Rincón, R. Influence of Gas Flow on the Axial Distribution of Densities, Temperatures and Thermodynamic Equilibrium Degree in Surface-Wave Plasmas Sustained at Atmospheric Pressure. Spectrochim. Acta Part B At. Spectrosc. 2019, 158, 105636. https://doi.org/10.1016/J.SAB.2019.105636
https://doi.org/10.1016/j.sab.2019.105636

[8] INDECOPI. Gas Natural seco.Sistema de tuberías para instalaciones internas residenciales y comerciales. https://www.italcaseperu.com/download/NTP 111.011 2006 Instalaciones internas residenciales y comerciales.pdf (accessed 2022-03-08).

[9] Badie, S.; Hale, C. P.; Lawrence, C. J.; Hewitt, G. F. Pressure Gradient and Holdup in Horizontal Two-Phase Gas-Liquid Flows with Low Liquid Loading. Int. J. Multiph. Flow 2000, 26, 1525-1543. https://doi.org/10.1016/S0301-9322(99)00102-0.
https://doi.org/10.1016/S0301-9322(99)00102-0

[10] Wu, J.; Li, Y.; Wang, Y. Three-Dimension Simulation of Two-Phase Flows in a Thin Gas Flow Channel of PEM Fuel Cell Using a Volume of Fluid Method. Int. J. Hydrogen Energy 2020, 45 (54), 29730-29737. https://doi.org/10.1016/J.IJHYDENE.2019.09.149
https://doi.org/10.1016/j.ijhydene.2019.09.149

[11] Liang, R.; Jin, X.; Yang, S.; Shi, J.; Zhang, S. Study on Flow Structure Transition in Thermocapillary Convection under Parallel Gas Flow. Exp. Therm. Fluid Sci. 2020, 113, 110037. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2019.110037
https://doi.org/10.1016/j.expthermflusci.2019.110037

[12] Bissor, E. H.; Yurishchev, A.; Ullmann, A.; Brauner, N. Prediction of the Critical Gas Flow Rate for Avoiding Liquid Accumulation in Natural Gas Pipelines. Int. J. Multiph. Flow 2020, 130, 103361. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2020.103361
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103361

[13] Alsaadi, Y.; Pereyra, E.; Torres, C.; Sarica, C. Liquid Loading of Highly Deviated Gas Wells from 60° to 88°. Proc. - SPE Annu. Tech. Conf. Exhib. 2015, 2015-January, 1752-1769. https://doi.org/10.2118/174852-MS
https://doi.org/10.2118/174852-MS

[14] Zhou, D.; Yuan, H. A New Model for Predicting Gas-Well Liquid Loading. SPE Prod. Oper. 2010, 25 (02), 172-181. https://doi.org/10.2118/120580-PA
https://doi.org/10.2118/120580-PA

[15] Trifonov, Y. Y. Linear and Nonlinear Instabilities of a Co-Current Gas-Liquid Flow between Two Inclined Plates Analyzed Using the Navier-Stokes Equations. Int. J. Multiph. Flow 2020, 122, 103159. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2019.103159
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103159

[16] Shi, S.; Wang, Y.; Qi, Z.; Yan, W.; Zhou, F. Experimental Investigation and New Void-Fraction Calculation Method for Gas-Liquid Two-Phase Flows in Vertical Downward Pipe. Exp. Therm. Fluid Sci. 2021, 121, 110252. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2020.110252
https://doi.org/10.1016/j.expthermflusci.2020.110252

[17] Kopparthy, S.; Mansour, M.; Janiga, G.; Thévenin, D. Numerical Investigations of Turbulent Single-Phase and Two-Phase Flows in a Diffuser. Int. J. Multiph. Flow 2020, 130, 103333. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2020.103333
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103333