Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Kinetic Aspects of Catalytic Interactions Involving Pentyl Acetate and Ethanolamine

Stepan Melnyk1, Yurii Melnyk1, Halyna Mahorivska1, Olena Fuchyla1
Affiliation: 
1 Lviv Polytechnic National University, 12, Bandera St., 79013 Lviv, Ukraine stepan.r.melnyk@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht17.04.820
AttachmentSize
PDF icon full_text.pdf627.18 KB
Abstract: 
A conversion scheme for pentyl acetate, ethanolamine, and the products resulting from their interaction through aminolysis, transesterification, and O-N-acyl migration reactions catalyzed by homogeneous and heterogeneous Brønsted-Lowry bases and acids is proposed. It has been determined that acid and base catalysts significantly enhance the aminolysis reaction of esters with amino alcohols when compared to the non-catalytic process. The impact of the catalyst on each reaction has been assessed.
References: 

[1] Peng, X. Method of an Organic Synthesis Intermediate N-acetamidoethanol. CN 106631859 A, May 10, 2017.

[2] Mondal M.G.; Pratap A.P. Synthesis and Performance Properties of Cationic Fabric Softeners Derived from Free Fatty Acid of Tallow Fat. J Oleo Sci 2016, 65, 663-670. https://doi.org/10.5650/jos.ess15276
https://doi.org/10.5650/jos.ess15276

[3] Hansen, H.S.; Diep, T.A. N-acylethanolamines, Anandamide and Food Intake. Biochem. Pharmacol. 2009, 78, 553-560. https://doi.org/10.1016/j.bcp.2009.04.024
https://doi.org/10.1016/j.bcp.2009.04.024

[4] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T. Production of Corrosion Inhibitors for Oil Refining Equipment Using Natural Components. Chem. Chem. Technol. 2018, 12, 400-404. https://doi.org/10.23939/chcht12.03.400
https://doi.org/10.23939/chcht12.03.400

[5] Melnyk, S.; Danyliuk, R.; Melnyk, Yu.; Reutskyy V. The Reaction of Oleic Acid with a Mixture of Ethanolamines. Chem. Chem. Technol. 2018, 12, 13-17. https://doi.org/10.23939/chcht12.01.013
https://doi.org/10.23939/chcht12.01.013

[6] Dinesh, K.; Amjad, A. Direct Synthesis of Fatty Acid Alkanolamides and Fatty Acid Alkyl Esters from High Free Fatty Acid Containing Triglycerides as Lubricity Improvers Using Heterogeneous Catalyst. Fuel 2015, 159, 845-853. https://doi.org/10.1016/j.fuel.2015.07.046
https://doi.org/10.1016/j.fuel.2015.07.046

[7] Mahadevan, S.; Venkatasubban, K. Synthesis of Hydroxyalkyl Amides from Esters. WO 2012/148624 Al. January 11, 2012.

[8] Markey, S.P.; Dudding, T.; Wang, T.-C.L. Base- and acid-Catalyzed Interconversions of O-acyl- and N-acyl-ethanolamines: A Cautionary Note for Lipid Analyses. J. Lipid Res. 2000, 41, 657-662. https://doi.org/10.1016/S0022-2275(20)32414-7
https://doi.org/10.1016/S0022-2275(20)32414-7

[9] Berčíková, M.; Lád, J.; Hrádková, I.; Kumherová, M.; Šmidrkal, J. Reaction of Fatty Acid Methyl Ester with Monoethanolamine and Diethanolamine. Tenside, Surfactants, Deterg. 2021, 58, 287-292. https://doi.org/10.1515/tsd-2020-2328
https://doi.org/10.1515/tsd-2020-2328

[10] Thabuis, C.; Tissot-Favre, D.; Bezelgues, J.-B.; Martin, J.-C.; Cruz-Hernandez, C.; Dionisi, F.; Destaillats F. Analysis of Chemically Synthesized Oleoylethanolamide by Gas-Liquid Chromatography. J. Chromatogr. A 2008, 1202, 216-219.
https://doi.org/10.1016/j.chroma.2008.07.008

[11] Wang, X.; Chen, Y.; Jin, Q.; Huang, J.; Wang, X. Synthesis of Linoleoyl Ethanolamide. J Oleo Sci 2013, 62, 427-433. https://doi.org/10.5650/jos.62.427
https://doi.org/10.5650/jos.62.427

[12] Ohshima, Y.; Imoto, H.; Fujiu A. Verfahren zur Herstellung von hochreinem Alkanolamid. DE 19648513 A1. February 15, 2007.

[13] Caldwell, N.; Jamieson, C.; Simpson, I.; Tuttle T. Organobase-Catalyzed Amidation of Esters with Amino Alcohols. Org. Lett. 2013, 15, 2506-2509. https://doi.org/10.1021/ol400987p
https://doi.org/10.1021/ol400987p

[14] Movassaghi, M.; Schmid M. A. N-Heterocyclic Carbene-Catalyzed Amidation of Unactivated Esters with Amino Alcohols. Org. Lett. 2005, 7, 2453-2456. https://doi.org/10.1021/ol050773y
https://doi.org/10.1021/ol050773y

[15] Lei, X.; Lu, W.; Peng, Q.; Li, H.; Chen, T.; Xu, S.; Zhang, F. Activated MgAl-layered Double Hydroxide as Solid Base Catalysts for the Conversion of Fatty Acid Methyl Esters to Monoethanolamides. APPL CATAL A-GEN 2011, 399, 87-92. https://doi.org/10.1016/j.apcata.2011.03.042
https://doi.org/10.1016/j.apcata.2011.03.042

[16] Chintareddy, V.R.; Ho, H.-A.; Sadow, A.D.; Verkade, J.G. Polymer-mounted N3=P(MeNCH2CH2)3N: A Green, Efficient and Recyclable Catalyst for Room-Temperature Transesterifications and Amidations of Unactivated Esters. Tetrahedron Lett. 2011, 52, 6523-6529. https://doi.org/10.1016/j.tetlet.2011.09.102
https://doi.org/10.1016/j.tetlet.2011.09.102

[17] Melnyk, Yu.; Melnyk, S.; Palyukh, Z.; Dzinyak, B. Research into Transesterification of Triglycerides by Aliphatic Alcohols C2-C4 in the Presence of Ionites. East.-Eur. J. Enterp. Technol. 2018, 1/6(94), 10-16. https://doi.org/10.15587/1729-4061.2018.122938
https://doi.org/10.15587/1729-4061.2018.122938

[18] Melnyk, S.; Danyliuk, R.; Melnyk, Yu.; Stadnytska, N. Study of the Pentyl Acetate and Ethanolamine Catalytic and Non-Catalytic Interaction. J. Chem. Technol. Metall. 2022, 57, 439-450.

[19] Melnyk S.R.; Danyliuk R.V.; Melnyk Yu.R. Ethanolamine and Pentyl Acetate Interaction Catalyzed by Cation Exchange Resin: Kinetic Insight. Journal of Chemistry and Technologies 2023, 31, 167-177. https://doi.org/10.15421/jchemtech.v31i1.267433
https://doi.org/10.15421/jchemtech.v31i1.267433

[20] Melnyk, S., Dzinyak, B. Selectivity of Formation and Yield of Dicarboxylic Acid Mono- and Diesters under Stationary Conditions. Chem. Chem. Technol. 2015, 9, 325-332. https://doi.org/10.23939/chcht09.03.325
https://doi.org/10.23939/chcht09.03.325

[21] Melnyk, S.R.; Khlibkevych, U.I.; Melnyk, Yu.R.; Mahorivska, H.Ya. Kinetic Research and Modeling of Benzoic Acid Esterification Process. Journal of Chemistry and Technologies 2021, 29, 559-569. https://doi.org/10.15421/jchemtech.v29i4.241445
https://doi.org/10.15421/jchemtech.v29i4.241445

[22] Glavan, D.; Gremasco, Y.; Gomes Mantovani, A.C.; Bona, E.; Killner, M.; Borsato, D. Kinetic Study of the Transesterification Reaction by Artificial Neural Networks and Parametric Particle Swarm Optimization. Fuel 2020, 267, 1172218. https://doi.org/10.1016/j.fuel.2020.117221
https://doi.org/10.1016/j.fuel.2020.117221