Removal of Phenol from Water Using an Activated Carbon Prepared from Juniperus Thurifera Tree
Attachment | Size |
---|---|
full_text.pdf | 708.74 KB |
[1] Damjanović, L.; Rakić, V.; Rac, V.; Stošić, D.; Auroux, A. The Investigation of Phenol Removal from Aqueous Solutions by Zeo-lites as Solid Adsorbents. J. Hazard. Mater. 2010, 184, 477-484. https://doi.org/10.1016/j.jhazmat.2010.08.059
https://doi.org/10.1016/j.jhazmat.2010.08.059
[2] Lin, S.H.; Juang, R.S. Adsorption of Phenol and Its Derivatives from Water Using Synthetic Resins and Low-Cost Natural Adsorbents: A Review. J. Environ. Manage. 2009, 90, 1336-1349. https://doi.org/10.1016/j.jenvman.2008.09.003
https://doi.org/10.1016/j.jenvman.2008.09.003
[3] Megharaj, M.; Pearson, H.W.; Venkateswarlu, K. Toxicity of Phenol and Three Nitrophenols Towards Growth and Metabolic Activities of Nostoc Linckia, Isolated from Soil. Arch. Environ. Contam. Toxicol. 1991, 21, 578-584. https://doi.org/10.1007/BF01183881
https://doi.org/10.1007/BF01183881
[4] Yang, L.; Wang, Y.; Song, J.; Zhao, W.; He, X.; Chen, J.; Xiao, M. Promotion of Plant Growth and in situ Degradation of Phenol by an Engineered Pseudomonas fluorescens Strain in Different Contaminated Environments. Soil Biol. Biochem. 2011, 43, 915-922. https://doi.org/10.1016/j.soilbio.2011.01.001
https://doi.org/10.1016/j.soilbio.2011.01.001
[5] World Health Organization, Guidelines for Drinking Water Quality, Health Criteria and Supporting Information; World Health Organization: Geneva, Switzerland, 1984; pp. 1-127.
[6] Dutta, N.N.; Brothakur, S.; Baruah, R. A Novel Process for Recovery of Phenol from Alkaline Wastewater: Laboratory Study and Predesign Cost Estimate. Water Environ. Res. 1998, 70, 4-9. https://doi.org/10.2175/106143098X126838
https://doi.org/10.2175/106143098X126838
[7] Baup, S.; Jaffre, C.; Wolbert, D.; Laplanche, A. Adsorption of Pesticides onto Granular Activated Carbon: Determination of Sur-face Diffusivities Using Simple Batch Experiments. Adsorption 2000, 6, 219-228. https://doi.org/10.1023/A:1008937210953
https://doi.org/10.1023/A:1008937210953
[8] Md Ahmaruzzaman. Adsorption of Phenolic Compounds on Low-Cost Adsorbents: A Review. Adv. Colloid Interface Sci. 2008, 143, 48-67. https://doi.org/10.1016/j.cis.2008.07.002
https://doi.org/10.1016/j.cis.2008.07.002
[9] Kim, T.Y.; Jin, H.J.; Park, S.S.; Kim, S.J.; Cho, S.Y. Adsorption Equilibrium of Copper Ion and Phenol by Powdered Activated Carbon, Alginate Bead and Alginate-Activated Carbon Bead. J. Ind. Eng. Chem. 2008, 14, 714-719. https://doi.org/10.1016/j.jiec.2008.07.004
https://doi.org/10.1016/j.jiec.2008.07.004
[10] Fan, J.; Zhang, J.; Zhang, C.; Ren, L.; Shi, Q. Adsorption of 2,4,6-Trichlorophenol from Aqueous Solution onto Activated Carbon Derived from loosestrife. Desalination 2011, 267, 139-146. https://doi.org/10.1016/j.desal.2010.09.016
https://doi.org/10.1016/j.desal.2010.09.016
[11] Haghighat, M.H.; Mohammad-Khah, A. Removal of Triha-lomethanes from Water using Modified Montmorillonite. Acta Chim. Slov. 2020, 67, 1072. http://dx.doi.org/10.17344/acsi.2020.5832
https://doi.org/10.17344/acsi.2020.5832
[12] Ren, S.; Deng, J.; Meng, Z.; Wang, T.; Xie, T.; Xu, S. En-hanced Removal of Phenol by Novel Magnetic Bentonite Compo-sites Modified with Amphoteric-Cationic Surfactants. Powder Technol. 2019, 356, 284-294. https://doi.org/10.1016/j.powtec.2019.08.024
https://doi.org/10.1016/j.powtec.2019.08.024
[13] Ouallal, H.; Dehmani, Y.; Moussout, H.; Messaoudi, L.; Azrour, M. Kinetic, Isotherm and Mechanism Investigations of the Removal of Phenols from Water by Raw and Calcined Clays. He-liyon 2019, 5, e01616. https://doi.org/10.1016/j.heliyon.2019.e01616
https://doi.org/10.1016/j.heliyon.2019.e01616
[14] Bouiahya, K.; Es-saidi, I.; El Bekkali, C.; Laghzizil, A.; Ro-bert, D.; Nunzi, J.M.; Saoiabi, A. Synthesis and Properties of Alumina-Hydroxyapatite Composites from Natural Phosphate for Phenol Removal from Water. Colloids Interface Sci. Commun. 2019, 31, 100188. https://doi.org/10.1016/j.colcom.2019.100188
https://doi.org/10.1016/j.colcom.2019.100188
[15] Liao, Q.; Sun, J.; Gao, L. The Adsorption of Resorcinol from Water Using Multi-Walled Carbon Nanotubes. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 312, 160-165. https://doi.org/10.1016/j.colsurfa.2007.06.045
https://doi.org/10.1016/j.colsurfa.2007.06.045
[16] Chakraborty, A.; Deva, D.; Sharma, A.; Verma, N. Adsor-bents Based on Carbon Microfibers and Carbon Nanofibers for the Removal of Phenol and Lead from Water. J. Colloid Interface Sci. 2011, 359, 228-239. http://dx.doi.org/10.1016/j.jcis.2011.03.057
https://doi.org/10.1016/j.jcis.2011.03.057
[17] Sulaymon, A.H.; Ahmed, K.W. Competitive Adsorption of Furfural and Phenolic Compounds onto Activated Carbon in Fixed Bed Column. Environ. Sci. Technol. 2008, 42, 392-397. https://doi.org/10.1021/es070516j
https://doi.org/10.1021/es070516j
[18] Okasha, A.Y.; Ibrahim, H.G. Phenol Removal from Aqueous Systems by Sorption of Using Some Local Waste Materials. Elec. J. Env. Agricult. Food Chem. 2010, 9, 796-807.
[19] Senthilkumaar, S.; Krishna, S.K.; Kalaamani, P.; Subbura-maan, C.V.; Ganapathi Subramaniam, N. Adsorption of Organo-phosphorous Pesticide from Aqueous Solution Using "Waste" Jute Fiber Carbon. Mod. Appl. Sci. 2010, 4, 67-83.
https://doi.org/10.5539/mas.v4n6p67
[20] Ekop, A.S.; Eddy, N.O. Thermodynamic Study on the Ad-sorption of Pb2+ and Zn2+ From Aqueous Solution by Human Hair. J. Chem. 2010, 7, 849239. https://doi.org/10.1155/2010/849239
https://doi.org/10.1155/2010/849239
[21] Mukherjee, S.; Kumar, S.A.; Misra, K.; Fan, M. Removal of Phenols from Water Environment by Activated Carbon, Bagasse Ash and Wood Charcoal. Chem. Eng. J. 2007, 129, 133-142. https://doi.org/10.1016/j.cej.2006.10.030
https://doi.org/10.1016/j.cej.2006.10.030
[22] Gauquelin, T.; Bertaudière, V.; Cambecèdes, J.; Largier, G. Le Genevrier Thurifere (Juniperus Thurifera L.) Dans les Pyrenees: Etat de Conservation et Perspectives. Acta Bot. Barc. 2003, 49, 83-94.
[23] Humelnicu, D.; Ignat, M.; Suchea, M. Evaluation of Adsorp-tion Capacity of Montmorillonite and Aluminium-pillared Clay for Pb2+ , Cu2+ and Zn2+. Acta Chim. Slov. 2015, 62, 947. http://dx.doi.org/10.17344/acsi.2015.1825
https://doi.org/10.17344/acsi.2014.1825
[24] Maulina, S.; Mentari, V.A. IOP Conf. Series: Materials Science and Engineering, 2019; pp. 012023.
https://doi.org/10.1088/1757-899X/685/1/012023
[25] Mahalakshmy, R.; Idraneel, P.; Viswanatan, B. Surface Func-tionalities of Nitric Acid Treated Carbon - A Density Functional Theory Based Vibrational Analysis. Indian J. Chem. 2009, 48, 352-356. http://nopr.niscpr.res.in/handle/123456789/3371
[26] El Nemr, A.; Abdelwahab, O.; El-Sikaily, A.; Khaled, A. Removal of Direct Blue-86 from Aqueous Solution by New Acti-vated Carbon Developed from Orange Peel. J. Hazard. Mater. 2009, 161, 102-110. https://doi.org/10.1016/j.jhazmat.2008.03.060
https://doi.org/10.1016/j.jhazmat.2008.03.060
[27] Yan, M.A.; Gao, N.; Chu, W.; Li, C. Removal of Phenol by Powdered Activated Carbon Adsorption. Front. Environ. Sci. Eng. 2013, 7, 158-165. https://doi.org/10.1007/s11783-012-0479-7
https://doi.org/10.1007/s11783-012-0479-7
[28] Lagergren, S. Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1-39.
[29] Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorp-tion Processes. Process. Biochem. 1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
https://doi.org/10.1016/S0032-9592(98)00112-5
[30] Weber, W.J.; Morris, J.C. Advances in Water Pollution Re-search: Removal of Biologically Resistant Pollutant from Wastewa-ter by Adsorption. In Proceedings of 1st International Conference on Water Pollution Symposium; Pergamon: Oxford, 1962; pp. 231-266.
https://doi.org/10.1016/B978-1-4832-8391-3.50032-4
[31] Hameed, B.H. Equilibrium and Kinetics Studies of 2,4,6-Trichlorophenol Adsorption onto Activated Clay. Colloid Surf. A: Physicochem. Eng. Aspects 2007, 307, 45-52. https://doi.org/10.1016/j.colsurfa.2007.05.002
https://doi.org/10.1016/j.colsurfa.2007.05.002
[32] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
https://doi.org/10.1021/ja02242a004
[33] Ullah, H.; Nafees, M.; Iqbal, F.; Awan, S.; Shah, A.; Waseem, A. Adsorption Kinetics of Malachite Green and Methylene Blue from Aqueous Solutions Using Surfactant-Modified Organoclays. Acta Chim. Slov. 2017, 64, 449.
https://doi.org/10.17344/acsi.2017.3285
[34] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-471.
[35] Senturk, I.; Alzein, M. Adsorption of Acid Violet 17 onto Acid-Activated Pistachio Shell: Isotherm, Kinetic and Thermody-namic Studies. Acta Chim. Slov. 2020, 67, 55-69. https://doi.org/10.17344/acsi.2019.5195
https://doi.org/10.17344/acsi.2019.5195
[36] Temkin, M.I.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochim. 1940, 12, 327-356.