Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Activation of Mo2B Catalyst in the Epoxidation Reaction of α-Ethylallyl Ethyl Acrylate with tert-Butyl Hydroperoxide

Zoryana Komarenska1, Lilianna Oliynyk1, Oksana Makota1
Affiliation: 
1 Lviv Polytechnic National University, 12, S.Bandery St., Lviv 79013, Ukraine. zkomaren@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.01.018
AttachmentSize
PDF icon full_text.pdf604.89 KB
Abstract: 
The regularities of Mo2B catalyst activation in the epoxidation reaction of alfa-ethylallyl ethyl acrylate with tert-butyl hydroperoxide have been studied. It has been shown that the catalyst activation process is described by the Avrami-Erofeev topokinetic equation and includes two successive stages – the nucleation and formation of a new phase active in the epoxidation reaction. The formation of epoxy only occurs in the presence of the activated form of the catalyst. The effective and topochemical process constants have been calculated.
References: 

[1] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part II: Application of Carboxy-Containing Peroxy Oligomer (CPO). Materials 2021, 14, 1285. https://doi.org/10.3390/ma14051285
https://doi.org/10.3390/ma14051285

[2] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320
https://doi.org/10.3390/ma14051320

[3] Bratychak, M.; Astakhova, O.; Shyshchak, O.; Sienkiewicz, M.; Kusinska-Lipka, J. Epoxy Composites Filled with Natural Calcium Carbonate. 2. Epoxy Composites Obtained in the Presence of Monomethacrylic Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2020, 14, 343-352. https://doi.org/10.23939/chcht14.03.343
https://doi.org/10.23939/chcht14.03.343

[4] Bratychak, M.; Astakhova, O.; Shyshchak, O.; Sienkiewicz, M.; Ivashkiv, O. Epoxy Composites Filled with Natural Calcium Carbonate. 1. Epoxy Composites Obtained in the Presence of Monoperoxy Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2019, 13, 360-364. https://doi.org/10.23939/chcht13.03.360
https://doi.org/10.23939/chcht13.03.360

[5] Demchuk, Yu.; Gunka, V.; Pyshyev, S.; Sidun, Iu.; Hrynchuk, Yu.; Kucinska-Lipka, Ju.; Bratychak M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
https://doi.org/10.23939/chcht14.02.251

[6] Piesowicz, E.; Irska, I.; Bryll, K.; Gawdzinska, K.; Bratychak, M. Poly(butyleneterephthalate) Carbon Nanotubes Nanocomposites. Part II. Structure and properties. Polimery 2016, 61, 24-30. https://doi.org/10.14314/polimery.2016.024
https://doi.org/10.14314/polimery.2016.024

[7] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxycontaining Derivatives in Bitumen - Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
https://doi.org/10.23939/chcht09.01.069

[8] Bratychak, M.; Bashta, B.; Astakhova, O.; Shyshchak, O.; Zubal, O. Synthesis Mechanism and Properties of Epoxy Resins Modified with Adipic Acid. Chem. Chem. Technol. 2019, 13, 52-58. https://doi.org/10.23939/chcht13.01.052
https://doi.org/10.23939/chcht13.01.052

[9] Bratychak, M.; Ripak, O.; Namiesnik, J.; Shyshchak, O.; Astakhova, O. Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar 2. Coumarone-Indene Resins with Epoxy Groups. Chem. Chem. Technol. 2018, 12, 93-100. https://doi.org/10.23939/chcht12.01.093
https://doi.org/10.23939/chcht12.01.093

[10] Yamazaki, T.; Iida, M.; Kawasaki-Takasuka, T.; Agou, T. Regio- as well as Stereoselective Epoxide Ring Opening Reactions Using 3,3,3-Trifluoroprop-1 yne. J Fluor Chem. 2022, 257-258, 109971. https://doi.org/10.1016/j.jfluchem.2022.109971
https://doi.org/10.1016/j.jfluchem.2022.109971

[11] Hanson, K.G.; Lin, C.-H.; Abu-Omar, M.M. Crosslinking of Renewable Polyesters with Epoxides to Form Bio-Based Epoxythermosets. Polymer 2022, 238, 124363. https://doi.org/10.1016/j.polymer.2021.124363
https://doi.org/10.1016/j.polymer.2021.124363

[12] Park, H.-Y.; Yeo, J.-G.; Choi, J.; Choe, G.-B.; Kim, G.-N.; Koh, Y.-H.; Yang, S.C.; Jung, Y.-G. Ceramic Green and Fired Body with a Uniform Microstructure Prepared Using Living Characteristics of Hoto-Curable Cycloaliphatic Epoxide:Applicability of Cycloaliphatic Epoxide in Photo-Polymerization-Based 3Dprinting. J. Eur. Ceram. Soc. 2022, 42, 589-599. https://doi.org/10.1016/j.jeurceramsoc.2021.10.015
https://doi.org/10.1016/j.jeurceramsoc.2021.10.015

[13] Sobani, M.; Soucek, M.D. Low Temperature Fracture Toughness of Polysulfide Modified BPA-Epoxide Primers. Prog. Org. Coat. 2022, 163, 106626. https://doi.org/10.1016/j.porgcoat.2021.106626
https://doi.org/10.1016/j.porgcoat.2021.106626

[14] Xu, X.; Zhang, D.; Wang, K.; Jia, Y.; Yang, C.; Shen, B.; Lai, C.; Yong, Q. In-situ Lignin Modification with Polyethylene Glycol-Epoxides to Boost Enzymatic Hydrolysis of Combined-Pretreated Masson Pine. Bioresour. Technol. 2022, 344, 126315. https://doi.org/10.1016/j.biortech.2021.126315.
https://doi.org/10.1016/j.biortech.2021.126315

[15] Abu Saleh, SK; Hazra, A.; Hajra, S. Regioselective Hydroperoxylation of Aziridines and Epoxides Only with Aqueous Hydrogen Peroxide. Adv. Synth. Catal. 2022, 364, 391-404. https://doi.org/10.1002/adsc.202100858
https://doi.org/10.1002/adsc.202100858

[16] Bratychak, M.; Bratychak, M. Jr.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Etherate. Mater. Res. Innov. 2002, 6, 24-30. https://doi.org/10.1007/s10019-002-0157-7
https://doi.org/10.1007/s10019-002-0157-7

[17] Andringa, R.L.H.; Jonker, M.; Minnaard, A.J. Synthesis of Phosphatidic Acids via Cobalt(Salen) Catalyzed Epoxide Ring-Opening with Dibenzyl Phosphate. Org. Biomol. Chem. 2022, 20, 2200-2204. https://doi.org/10.1039/D2OB00168C
https://doi.org/10.1039/D2OB00168C

[18] Calderini, E.; Wessel, J.; Süss, Ph.; Schrepfer, P.; Wardenga, R.; Schallmey, A. Selective Ring-Opening of Di-Substituted Epoxides Catalysed by Halohydrin Dehalogenases. ChemCatChem 2019, 11, 2099-2106. https://doi.org/10.1002/cctc.201900103
https://doi.org/10.1002/cctc.201900103

[19] Sen, R.; Goeppert, A.; Surya Prakash, G.K. Integrated Carbon Capture and Utilization to Methanol with Epoxide-Functionalized Polyamines Under Homogeneous Catalytic Conditions. J. Organomet. Chem. 2022, 965-966, 122331. https://doi.org/10.1016/j.jorganchem.2022.122331
https://doi.org/10.1016/j.jorganchem.2022.122331

[20] Li, Y.; Zhai, G.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Synergistic Effect between Boron Containing Metal-Organic Frameworks and Light Leading to Enhanced CO2 Cycloaddition with Epoxides. Chem. Eng. J. 2022, 437, 135363. https://doi.org/10.1016/j.cej.2022.135363
https://doi.org/10.1016/j.cej.2022.135363

[21] Faizan, M.; Srivastav, N.; Pawar, R. Azaboratrane as an Exceptionally Potential Organocatalyst for the Activation of CO2 and Coupling with Epoxide. Mol. Catal. 2022, 521, 112201. https://doi.org/10.1016/j.mcat.2022.112201
https://doi.org/10.1016/j.mcat.2022.112201

[22] Ge, Y.; Cheng, G.; Ke, H. Triethanolamine Borate as Bifunctional Lewis Pair Catalyst for the Cycloaddition of CO2 with Epoxides. J. CO2 Util. 2022, 57, 101873. https://doi.org/10.1016/j.jcou.2021.101873
https://doi.org/10.1016/j.jcou.2021.101873

[23] Yang, X.; Liu, Z.; Chen, P.; Liu, F.; Zhao, T. Effective Synthesis of Cyclic Carbonates from CO2 and Epoxides Catalyzed by Acetylcholine Bromide-Based Deep Eutectic Solvents. J. CO2 Util. 2022, 58, 101936. https://doi.org/10.1016/j.jcou.2022.101936
https://doi.org/10.1016/j.jcou.2022.101936

[24] Wang, Y.; Liu, Y.; Su, Q.; Li, Y.; Deng, L.; Dong, L.; Fu, M.; Liu, S.; Cheng, W. Poly(Ionic Liquid) Materials Tailored by Carboxyl Groups for the Gas Phase-Conversion of Epoxide and CO2 into Cyclic Carbonates. J. CO2 Util. 2022, 60, 101976. https://doi.org/10.1016/j.jcou.2022.101976
https://doi.org/10.1016/j.jcou.2022.101976

[25] D'Elia, V.; Kleij, A.W. Surface Science Approach to the Heterogeneous Cycloaddition of CO2 to Epoxides Catalyzed by Siteisolated Metal Complexes and Single Atoms: A Review. Green Chemical Engineering 2022, 3, 210-227. https://doi.org/10.1016/j.gce.2022.01.005
https://doi.org/10.1016/j.gce.2022.01.005

[26] Ivashchuk, O. Catalytic Intensification of the Cyclohexane Oxidation. Chem. Chem. Technol. 2017, 11, 430-436. https://doi.org/10.23939/chcht11.04.430
https://doi.org/10.23939/chcht11.04.430

[27] Khalameida, S.; Samsonenko, M.; Sydorchuk, V.; Zakutevskyy, O.; Starchevskyy, V.; Lakhnik, A. Improving the Photocatalytic Properties of Tin Dioxide Doped with Titanium and Copper in the Degradation of Rhodamine B and Safranin T. React. Kinet. Mech. Catal. 2022, 135, 1665-1685. https://doi.org/10.1007/s11144-022-02206-w
https://doi.org/10.1007/s11144-022-02206-w

[28] Starchevskyy, V.; Shparij, M.; Hrynchuk, Y.; Reutskyy, V.; Kurta, S.; Hatsevych, O. Modification of the Catalytic System or the Industrial Chlorine Processing of Ethylene in 1,2-Dichloroethane. Chem. Chem. Technol. 2020, 14, 394-402. https://doi.org/10.23939/chcht14.03.394
https://doi.org/10.23939/chcht14.03.394

[29] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Modified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142
https://doi.org/10.23939/chcht15.01.142

[30] Shpariy, M.; Starchevskyy, V.; Znak, Z.; Mnykh, R.; Poliuzhyn, I. Extraction Of Iron-Containing Catalyst from Chlororganic Wastes Generated by Ethylene Chlorination. East.-Eur. J. Enterp. Technol. 2020, 2/10, 19-26. https://doi.org/10.15587/1729-4061.2020.201696
https://doi.org/10.15587/1729-4061.2020.201696

[31] Khalameida, S.V.; Samsonenko, M.N.; Sydorchuk, V.V.; Starchevskyy, V.L.; Zakutevskyy, O.I.; Khyzhun, O.Yu. Photocatalytic Properties of Tin Dioxide Doped with Chromium(III), Silver and Zinc Compounds in the Oxidation of Organic Substrates by the Action of Visible Light. Theor. Exp. Chem. 2017, 53, 40-46. https://doi.org/10.1007%2Fs11237-017-9499-5
https://doi.org/10.1007/s11237-017-9499-5

[32] Trach, Yu. Kinetics of the Reaction Between Ethylallyl Ethylacrylate and tert-Butyl Hydroperoxide in the Presence of Molybdenum Catalysts. Pol. J. Chem. 2002, 76, 1323-1332.

[33] Trach, Yu.B.; Nikipanchuk, M.V.; Komarenskaya, Z.M. Reaction Kinetics of the Hydroperoxide Epoxidation of 1-Octene in the Presence of Mo2B. Kinet. Catal. 2004, 45, 504-507. https:// link.springer.com/article/10.1023/B:KICA.0000038077.72162.54
https://doi.org/10.1023/B:KICA.0000038077.72162.54

[34] Makota, O.; Wolf, J.; Trach, Yu.; Schulze, B. Epoxidation of Cyclooctene with Hydroperoxy Sultams Catalyzed by Molybdenum Boride. Appl. Catal. A-Gen. 2007, 323, 174-180. https://doi.org/10.1016/j.apcata.2007.02.013
https://doi.org/10.1016/j.apcata.2007.02.013

[35] Makota, O.; Eilfeld, A.; Trach, Yu.; Schulze, B.; Sieler, J. Novel Hydroperoxy Sultam, 2-(6-Bromo-pyrid-2-yl)-2,3,4,5,6,7-hexahydro-1,2- benzisothiazol-3-hydroperoxy 1,1-dioxide: Synthesis, Crystal Structure and Kinetics of Catalytic Interaction with Cyclooctene. New J. Chem. 2008, 32, 1020-1026. https://doi.org/10.1039/B717726G
https://doi.org/10.1039/b717726g

[36] Markevich, V.S.; Ulyanova, V.N.; Loginova, V.A. Oil refining and petrochemistry 1979, 11, 47-48.

[37] Trach, Yu.B.; Nikipanchuk M.V.; Komarenskaya Z.M. Neftekhimiya 2003, 43, 386.

[38] Trach, Yu.B.; Chernii, M.O. Ukrainskii khimichnyi zhurnal 2003, 69, 112-116.

[39] Makota, O.; Trach, Y.; Saldan, I.; Evers, E.; Narayana Kalevaru, V.; Martin, A. Decomposition of tert-Butyl Hydroperoxide in the Presence of Selected Initiators and Catalysts. Chem. Chem. Technol. 2018, 12, 154-157. https://doi.org/10.23939/chcht12.02.154
https://doi.org/10.23939/chcht12.02.154

[40] Trach, Yu.B.; Makota, O.I. Effect of Olefin Concentration on the Degradation of tert-Butyl Hydroperoxide and the Epoxidation of Octene-1 in the Presence of Molybdenum Boride. Pet. Chem. 2005, 45, 327-329.

[41] Trach, Yu.B.; Makota, O.I. The Basic Features of the Hydroperoxide Epoxidation of Ethylallyl Ethacrylate in the Presence of Molybdenum Boride. Neftekhimiya 2004, 44, 52-57.

[42] Pyrig, I.Yu.; Nikipanchuk, M.V.; Chernyak, B.I. Kinet. Catal. 1983, XXIV, 600-605.

[43] Nikipanchuk, M.V.; Komarenskaya, Z.M.; Cherniy, M.O. On the Activation of Mo2B and MoB Catalysts in Oct-1-ene Epoxidation with tert-Butyl Hydroperoxide. Kinet. Catal. 2014, 55, 212-216. https://doi.org/10.1134/S0023158414020062
https://doi.org/10.1134/S0023158414020062

[44] Nykypanchuk, M.V.; Chernii, M.O.; Komarenskaya, Z.М. The Effect of Reaction Conditions on MoB Activation in 1-Octene Epoxidation with tert_Butyl Hydroperoxide. Kinet. Catal. 2016, 57, 368-372.
https://doi.org/10.1134/S0023158416030113

[45] Nykypanchuk, M.V.; Komarenska, Z.М.; Zhukrovska, M.O. Effect of the Phase Composition of Molybdenum Boride on its Catalytic Properties in the Epoxidation of 1-Octene by tert-Butyl Hydroperoxide. Theor. Exp. Chem. 2019, 54, 407-413.
https://doi.org/10.1007/s11237-019-09588-4

[46] Trach, Yu.B.; Komarenskaya, Z.M.; Nikipanchuk, M.V.; Pyrig, I.Yu.; Romanyuk, G.V. Hydroperoxide Epoxidation of Ethylallyl Ethylacrylate in the Presence of Mo2B. Theor. Exp. Chem. 2001, 37, 80-83.
https://doi.org/10.1023/A:1010445207391

[47] Komarenska, Z.M; Romaniuk, G.V.; Koval, Z.М.; Nikipanchuk, М.V. Vplyv produktiv reaktsii i reaktantiv na pochatkovu shvydkist reaktsii vzaemodii tret-butylhidroperoksydu z etylaliletylakrylatom u prysutnosti Mo2O. Voprosy Khimii i Khimicheskoi Tekhnologii 2010, 4, 25-28.

[48] Milas, N.A.; Surgenor, D.M. Studies in Organic Peroxides. VIII. t-Butyl Hydroperoxide and Di-t-butyl Peroxide. J. Am. Chem. Soc. 1946, 68, 205-208. https://doi.org/10.1021/ja01206a017
https://doi.org/10.1021/ja01206a017

[49] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073
https://doi.org/10.23939/chcht07.01.073

[50] Komarenskaya, Z.M.; Chernyak, B.I.; Mishchenko, G.M.; Trach, Yu.B. Chemiluminescence in the Oxidation of Cyclooctene by Molecular Oxygen. Theor. Exp. Chem. 1999, 35, 330-333. https://doi.org/10.1007/BF02522791
https://doi.org/10.1007/BF02522791

[51] Arslanov, V.V.; Sheinina, L.S.; Bulgakova, R.A.; Belomestnykh, A.V. Enhanced Reactivity of the Epoxy Oligomers in Organized Monolayers at the Air-Water Interface. Langmuir 1995, 11, 3953-3958. https://doi.org/10.1021/la00010a054
https://doi.org/10.1021/la00010a054

[52] Hardiman, K.M.; Cooper, C.G.; Adesina, A.A.; Lange, R. Post-mortem characterization of coke-induced deactivated alumina-supported Co-Ni catalysts. Chem. Eng. Sci. 2006, 61, 2565-2573. https://doi.org/10.1016/j.ces.2005.11.021
https://doi.org/10.1016/j.ces.2005.11.021

[53] Zubyk, H.; Mykhailiv, O.; Papathanassiou, A.; Sulikowski, B.; Zambrzycka-Szelewa, E.; Bratychak, M.; Plonska-Brzezinska,

M.A. A Phenol-Formaldehyde Polymeric Network to Generate Organic Aerogels: Synthesis, Physicochemical Characteristics and Potential Applications. J. Mater. Chem. A 2018, 6, 845-852. https://doi.org/10.1039/C7TA08814K
https://doi.org/10.1039/C7TA08814K