Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Determination of the Rate Constant of Microorganisms Destruction after Ultrasound Water Treatment and Different Gases Action

Iryna Koval1
Affiliation: 
1 Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine irynazk@gmail.com
DOI: 
https://doi.org/10.23939/chcht16.04.652
AttachmentSize
PDF icon full_text.pdf287.59 KB
Abstract: 
The change of microorganisms number (rod-like spore-containing Bacillus cereus bacteria type) for the range of 102 ÷ 106 CFU in 1 cm3 from the duration of simultaneous action of ultrasound (US) cavitation and the nature of different gas (carbon dioxide, oxygen, argon) is presented. The graphical dependences of the effective rate constant values of microorganisms destruction (kd) on its initial number per unit volume of water at different modes of its treatment are shown. The destruction degrees of bacterial cells in the process of water purification are calculated. It was investigated that the value of kd does not depend on the initial number of cells in water, but depends on the nature of the bubbled gas through the reaction aqueous medium: kd(Ar/US) > kd(O2/US) > kd(CO2/US).
References: 

[1] Romenskiy, A.V.; Kazakov, V.V.; Grin, G.I. Ultrazvuk v geterogennom katalize; Severodonetskaya gorodskaya tipografiya: Severodonetsk, 2006.

[2] Naidji, B.; Hallez, L.; Taouil, A. E.; Rebetez, M.; Hihn, J-Y. Influence of Pressure on Ultrasonic Cavitation Activity in Room Temperature Ionic Liquids: An Electrochemical Study. Ultrason. Sonochem. 2019, 54, 129-134. https://doi.org/10.1016/j.ultsonch.2019.02.007
https://doi.org/10.1016/j.ultsonch.2019.02.007

[3] Yamashita, T.; Ando, K. Low-intensity Ultrasound Induced Cavitation and Streaming in Oxygen-Supersaturated Water: Role of Cavitation Bubbles as Physical Cleaning Agents. Ultrason. Sonochem. 2019, 52, 268-279. https://doi.org/10.1016/j.ultsonch.2018.11.025
https://doi.org/10.1016/j.ultsonch.2018.11.025

[4] Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 6, 219-223. https://doi.org/10.23939/chcht06.02.219
https://doi.org/10.23939/chcht06.02.219

[5] Kondratovych, O.; Koval, I.; Kyslenko, V.; Shevchuk, L.; Predzumirska, L.; Maksymiv, N. Whey Disinfection and its Properties Changed under Ultrasonic Treatment. Chem. Chem. Technol. 2013, 7, 185-190. https://doi.org/10.23939/chcht07.02.185
https://doi.org/10.23939/chcht07.02.185

[6] Li, B.; Gu, Y.; Chen, M. An Experimental Study on the Cavitation of Water with Dissolved Gases. Exp. Fluids. 2017, 58, 164. https://doi.org/10.1007/s00348-017-2449-0
https://doi.org/10.1007/s00348-017-2449-0

[7] Koval, I. Synergistic Effect of Ultrasound Cavitation and Gas in the Water Disinfection. Chem. Chem. Technol. 2021, 15, 575-582. https://doi.org/10.23939/chcht15.04.575
https://doi.org/10.23939/chcht15.04.575

[8] Koval, I. Correlation between Diameter of Microorganisms and Efficiency of Microorganisms Destruction under Gas/Cavitation Conditions. Chem. Chem. Technol. 2021, 15, 98-104. https://doi.org/10.23939/chcht15.01.098
https://doi.org/10.23939/chcht15.01.098

[9] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruction of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264
https://doi.org/10.23939/chcht14.02.264

[10] Koval, I.Z.; Kіslenko, V.N.; Starchevskii, V.L.; Shevchuk, L.I. The Effect of Carbon Dioxide on the Viability of Bacteria of Bacillus and Diplococcus Genera. J. Water Chem. Technol. 2012, 34, 112-116. https://doi.org/10.3103/S1063455X12020075
https://doi.org/10.3103/S1063455X12020075

[11] Dai, C.; Xiong, F.; He, R.; Zhang, W., Ma, Н. Effects of Low-Intensity Ultrasound on the Growth, Cell Membrane Permeability and Ethanol Tolerance of Saccharomyces cerevisiae. Ultrason. Sonochem. 2017, 36, 191-197. https://doi.org/10.1016/j.ultsonch.2016.11.035
https://doi.org/10.1016/j.ultsonch.2016.11.035

[12] Tsukamoto, I.; Yim, B.; Stavarache, C.E.; Furuta, M.; Hashiba, K.; Maeda, Y. Inactivation of Saccharomyces cerevisiae by Ultrasonic Irradiation. Ultrason. Sonochem. 2004, 11, 61-65. https://doi.org/10.1016/S1350-4177(03)00135-4
https://doi.org/10.1016/S1350-4177(03)00135-4

[13] Slyusarenko, T.P. Laboratornyy praktikum po mikrobiologii pishchevykh proizvodstv; M.: Legkaya i pishchevaya promyshlennost, 1984.

[14] Koval, I.; Shevchuk, L.; Starchevskyy, V. Ultrasonic Intensification of the Natural Water and Sewage Disinfection. Chem. Eng. Trans. 2011, 24, 1315-1320. https://doi.org/10.3303/CET1124220

[15] Radi, R. Oxygen Radicals, Nitric Oxide, and Peroxynitrite: Redox Pathways in Molecular Medicine. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 5839-5848. https://doi.org/10.1073/pnas.1804932115
https://doi.org/10.1073/pnas.1804932115

[16] Wang, F.; Lu, S.; Ji, M. Components of Released Liquid from Ultrasonic Waste Activated Sludge Disintegration. Ultrason. Sonochem. 2006, 13, 334-338. https://doi.org/10.1016/j.ultsonch.2005.04.008
https://doi.org/10.1016/j.ultsonch.2005.04.008

[17] Tiehm, A.; Nickel, K.; Zellhorn, M.; Neis, U. Ultrasonic Waste Activated Sludge Disintegration for Improving Anaerobic Stabilization. Water Res. 2001, 35, 2003-2009. https://doi.org/10.1016/S0043-1354(00)00468-1
https://doi.org/10.1016/S0043-1354(00)00468-1