Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Investigation and Comparison of Antioxidant Potential of Catechins Present in Green Tea: DFT Study

Sanduni S. Wijesooriya1, Dinesh R. Pandithavidana1
Affiliation: 
1 University of Kelaniya, Kelaniya 11600, Sri Lanka dinesh@kln.ac.lk
DOI: 
https://doi.org/10.23939/chcht16.04.591
AttachmentSize
PDF icon full_text.pdf1 MB
Abstract: 
DFT calculations were applied to compare the antioxidant potential of four major catechins present in green tea. The thermodynamic parameters related to three key mechanisms of primary antioxidant action were investigated in detail. Molecular orbital energies, absolute hardness, electronegativity, and electrophilicity index, which contributed to the radical scavenging were also investigated. The radical scavenging potential of each hydroxyl group of these polyphenolic antioxidants were investigated independently.
References: 

[1] Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
https://doi.org/10.1111/j.1541-4337.2011.00156.x

[2] Nimse, S.B.; Pal, D. Free Radicals, Natural Antioxidants, and their Reaction Mechanisms. RSC Adv. 2015, 5, 27986-28006. https://doi.org/10.1039/C4RA13315C
https://doi.org/10.1039/C4RA13315C

[3] Shahidi, F.; Zhong, Y. Novel Antioxidants in Food Quality Preservation and Health Promotion. Eur. J. Lipid Sci. Technol. 2010, 112, 930-940. https://doi.org/10.1002/ejlt.201000044
https://doi.org/10.1002/ejlt.201000044

[4] Dizdaroglu, M. Oxidative Damage to DNA in Mammalian Chromatin. Mutat. Res. DNAging. 1992, 275, 331-342. https://doi.org/10.1016/0921-8734(92)90036-O
https://doi.org/10.1016/0921-8734(92)90036-O

[5] Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480-492. https://doi.org/10.1016/j.foodchem.2017.08.117
https://doi.org/10.1016/j.foodchem.2017.08.117

[6] Lambert, J.D.; Yang, C.S. Mechanisms of Cancer Prevention by Tea Constituents. J. Nutr. 2003, 133, 3262S-3267S. https://doi.org/10.1093/jn/133.10.3262S
https://doi.org/10.1093/jn/133.10.3262S

[7] Chung, J.E.; Kurisawa, M.; Kim, Y.-J.; Uyama, H.; Kobayashi, S. Amplification of Antioxidant Activity of Catechin by Polycondensation with Acetaldehyde. Biomacromolecules 2004, 5, 113-118. https://doi.org/10.1021/bm0342436
https://doi.org/10.1021/bm0342436

[8] Sabetkar, M.; Low, S.Y.; Bradley, N.J.; Jacobs, M.; Naseem, K.M.; Richard Bruckdorfer, K. The Nitration of Platelet Vasodilator Stimulated Phosphoprotein Following Exposure to Low Concentrations of Hydrogen Peroxide. Platelets 2008, 19, 282-292. https://doi.org/10.1080/09537100801915142
https://doi.org/10.1080/09537100801915142

[9] Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial Effects of Green Tea: A Literature Review. Chinese Med. 2010, 5, 13. https://doi.org/10.1186/1749-8546-5-13
https://doi.org/10.1186/1749-8546-5-13

[10] Yokozawa, T.; Nakagawa, T.; Lee, K. I.; Cho, E.J. Effects of Green Tea Tannin on Cisplatin-induced Nephropathy in LLC-PK1 Cells and Rats. J. Pharm. Pharmacol. 1999, 51, 1325-1331. https://doi.org/10.1211/0022357991776912
https://doi.org/10.1211/0022357991776912

[11] Škorňa, P.; Rimarčík, J.; Poliak, P.; Lukeš, V.; Klein, E. Thermodynamic Study of Vitamin B6 Antioxidant Potential. Comput. Theor. Chem. 2016, 1077, 32-38. https://doi.org/10.1016/j.comptc.2015.10.010
https://doi.org/10.1016/j.comptc.2015.10.010

[12] Pandithavidana, D.R.; Jayawardana, S.B. Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights. Molecules 2019, 24, 1646-1654. https://doi.org/10.3390/molecules24091646
https://doi.org/10.3390/molecules24091646

[13] Borgohain, R.; Guha, A.K.; Pratihar, S.; Handique, J.G. Antioxidant Activity of Some Phenolic Aldehydes and Their Diamine Derivatives: A DFT Study. Comput. Theor. Chem. 2015, 1060, 17-23. https://doi.org/10.1016/j.comptc.2015.02.014
https://doi.org/10.1016/j.comptc.2015.02.014

[14] Mazzone, G.; Russo, N.; Toscano, M. Antioxidant Properties Comparative Study of Natural Hydroxycinnamic Acids and Structurally Modified Derivatives: Computational Insights. Comput. Theor. Chem. 2016, 1077, 39-47. https://doi.org/10.1016/j.comptc.2015.10.011
https://doi.org/10.1016/j.comptc.2015.10.011

[15] Klein, E.; Lukeš, V.; Ilčin, M. DFT/B3LYP Study of Tocopherols and Chromans Antioxidant Action Energetics. Chem. Phys. 2007, 336, 51-57. https://doi.org/10.1016/j.chemphys.2007.05.007
https://doi.org/10.1016/j.chemphys.2007.05.007

[16] Klein, E.; Lukeš, V. DFT/B3LYP Study of the Substituent Effect on the Reaction Enthalpies of the Individual Steps of Single Electron Transfer−Proton Transfer and Sequential Proton Loss Electron Transfer Mechanisms of Phenols Antioxidant Action. J. Phys. Chem. A 2006, 110, 12312-12320. https://doi.org/10.1021/jp063468i
https://doi.org/10.1021/jp063468i

[17] Kamat, J.P.; Devasagayam, T.P.A. Nicotinamide (Vitamin B3) as an Effective Antioxidant Against Oxidative Damage in Rat Brain Mitochondria. Redox Rep. 1999, 4, 179-184. https://doi.org/10.1179/135100099101534882
https://doi.org/10.1179/135100099101534882

[18] Orenha, R.P.; Galembeck, S.E. Molecular Orbitals of NO, NO+, and NO-: A Computational Quantum Chemistry Experiment. J. Chem. Educ. 2014, 91, 1064-1069. https://doi.org/10.1021/ed400618j
https://doi.org/10.1021/ed400618j

[19] Rajan, V.K.; Muraleedharan, K. A Computational Investigation on the Structure, Global Parameters and Antioxidant Capacity of a Polyphenol, Gallic Acid. Food Chem. 2017, 220, 93-99. https://doi.org/10.1016/j.foodchem.2016.09.178
https://doi.org/10.1016/j.foodchem.2016.09.178

[20] Mendoza-Wilson, A.M.; Glossman-Mitnik, D. Theoretical Study of the Molecular Properties and Chemical Reactivity of (+) Catechin and (-)-Epicatechin Related to Their Antioxidant Ability. J. Mol. Struct.: THEOCHEM 2006, 761, 97-106. https://doi.org/10.1016/j.theochem.2006.01.001
https://doi.org/10.1016/j.theochem.2006.01.001

[21] Wang, J.; Tang H.; Hou, B.; Zhang, P.; Wang, Q.; Zhang, B.-L.; Huang, Y.-W.; Wang, Y.; Xiang, Z.-M.; Zi, C.-T. et al. Synthesis, Antioxidant Activity, and Density Functional Theory Study of Catechin Derivatives. RSC Adv. 2017, 7, 54136-54141. https://doi.org/10.1039/C7RA11496F
https://doi.org/10.1039/C7RA11496F

[22] Mennucci, B.; Cammi, R. Continuum Solvation Models in Chemical Physics: From Theory to Applications; John Wiley & Sons, Ltd: Chichester, UK, 2007.
https://doi.org/10.1002/9780470515235

[23] Mazzone, G.; Malaj, N.; Russo, N.; Toscano, M. Density Functional Study of the Antioxidant Activity of Some Recently Synthesized Resveratrol Analogues. Food Chem. 2013, 141, 2017-2024. https://doi.org/10.1016/j.foodchem.2013.05.071
https://doi.org/10.1016/j.foodchem.2013.05.071

[24] Mazzone, G.; Malaj, N.; Galano, A.; Russo, N.; Toscano M. Antioxidant Properties of Several Coumarin-Chalcone Hybrids from Theoretical Insights. RSC Adv. 2015, 5, 565-575. https://doi.org/10.1039/C4RA11733F
https://doi.org/10.1039/C4RA11733F

[25] Anitha, S.; Krishnan, S.; Senthilkumar, K.; Sasirekha, V. Theoretical Investigation on the Structure and Antioxidant Activity of (+) Catechin and (−) Epicatechin - a Comparative Study. Mol. Phys. 2020, 118, 1745917. https://doi.org/10.1080/00268976.2020.1745917
https://doi.org/10.1080/00268976.2020.1745917

[26] Wang, A.; Lu, Y.; Du, X.; Shi, P.; Zhang, H. A Theoretical Study on the Antioxidant Activity of Uralenol and Neouralenol Scavenging Two Radicals. Struct. Chem. 2018, 29, 1067-1075. https://doi.org/10.1007/s11224-018-1090-8
https://doi.org/10.1007/s11224-018-1090-8

[27] Parr, R.G.; von Szentpály, L.; Liu, S.: Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
https://doi.org/10.1021/ja983494x

[28] Ardjani, A.T.E.; Mekelleche, S.M. Analysis of the Antioxidant Activity of 4-(5-Chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic Acid Derivatives Using Quantum-Chemistry Descriptors and Molecular Docking. J. Mol. Model. 2016, 22, 302. https://doi.org/10.1007/s00894-016-3160-4
https://doi.org/10.1007/s00894-016-3160-4

[29] Vorobyova, V.; Shakun, A.; Chygyrynets, O.; Skiba, M.; Zaporozhets, J. Antioxidant Activity and Phytochemical Screening of the Apricot Cake Extract: Experimental and Theoretical Studies. Chem. Chem. Technol. 2020, 14, 372-379. https://doi.org/10.23939/chcht14.03.372
https://doi.org/10.23939/chcht14.03.372

[30] Kamat, J.P.; Devasagayam, T.P.A. Nicotinamide (Vitamin B3) as an Effective Antioxidant against Oxidative Damage in Rat Brain Mitochondria. Redox Rep. 1999, 4, 179-184. https://doi.org/10.1179/135100099101534882
https://doi.org/10.1179/135100099101534882