Clay-Sand Wettability Evaluation for Heavy Crude Oil Mobility
Attachment | Size |
---|---|
full_text.pdf | 565.11 KB |
Keywords:
[1] Lajous, A. Declinación y Destino de las Exportaciones de Petróleo Crudo Mexicano. Foro Int. 2019, 59, 189-259. https://doi.org/10.24201/fi.v59i1.2585
https://doi.org/10.24201/fi.v59i1.2585
[2] Gutiérrez, R.; Vergara González, R.; Díaz Carreño, M. Predicción de la volatilidad en el Mercado del Petróleo Mexicano ante la Presencia de Efectos Asimétricos. Cuad. Econ. (Spain) 2015, 34, 299. https://doi.org/10.15446/cuad.econ.v34n65.48702
https://doi.org/10.15446/cuad.econ.v34n65.48702
[3] http://sih.hidrocarburos.gob.mx/
[4] Suárez-Domínguez, E.-J.; Manuel-Rivera, R., Coronel-Santillán, A.-U.; Palacio‐Pérez, A.; Izquierdo‐Kulich, E. Estudio de Coeficientes Reológicos de un Crudo Extrapesado Mezclado con un Biorreductor de Viscosidad. Ingeniería Mecánica 2015, 18, 87-92.
[5] Santos, I.C.V.M.; Oliveira, P.F.; Mansur, C.R.E. Factors that Affect Crude Oil Viscosity and Techniques to Reduce it: A Review. Braz. J. Petrol. Gas 2017, 11, 115-130. https://doi.org/10.5419/bjpg2017-0010
https://doi.org/10.5419/bjpg2017-0010
[6] Speight, J.G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, 2014. https://doi.org/10.1201/b16559
https://doi.org/10.1201/b16559
[7] Zhang, F.; Shan, D.; Liu, G.; Li, X.; Sun, J. Overview of Flow Improvers for Crude Oil Production in China. Earth Environ. Sci. 2020, 453, 012037. https://doi.org/10.1088/1755-1315/453/1/012037
https://doi.org/10.1088/1755-1315/453/1/012037
[8] Yang, Y.; Guo, J.; Cheng, Z.; Wu, W.; Zhang, Jianjun; Zhang, Jiangwei; Yang, Z.; Zhang, D. New Composite Viscosity Reducer with Both Asphaltene Dispersion and Emulsifying Capability for Heavy and Ultraheavy Crude Oils. Energ. Fuel. 2017, 31, 1159-1173. https://doi.org/10.1021/acs.energyfuels.6b02265
https://doi.org/10.1021/acs.energyfuels.6b02265
[9] Li, X.; Shi, L.; Li, H.; Liu, P,; Luo, J.; Yuan, Z. Experimental Study on Viscosity Reducers for SAGD in Developing Extra-Heavy Oil Reservoirs. J. Petrol. Sci. Eng. 2018, 166, 25-32. https://doi.org/10.1016/j.petrol.2018.03.022
https://doi.org/10.1016/j.petrol.2018.03.022
[10] Negi, H.; Faujdar, E.; Saleheen, R.; Singh, R.K. Viscosity Modification of Heavy Crude Oil by Using a Chitosan-Based Cationic Surfactant. Energ. Fuel. 2020, 34, 4474-4483. https://doi.org/10.1021/acs.energyfuels.0c00296
https://doi.org/10.1021/acs.energyfuels.0c00296
[11] Perez-Sanchez, J.F.; Gallegos-Villella, R.R.; Gomez-Espinoza, J., Suarez-Dominguez, E.J. Determining the Effect of a Viscosity Reducer on Water - Heavy Crude Oil Emulsions. IJEAT 2019, 8, 844-848.
[12] Li, W.; Zhao, X.; Ji, Y.; Peng, H.; Li, Y.; Liu, L.; Han, X. An Investigation on Environmentally Friendly Biodiesel-Based Invert Emulsion Drilling Fluid. J. Pet. Explor. Prod. Technol. 2016, 6, 505-517. https://doi.org/10.1007/s13202-015-0205-7
https://doi.org/10.1007/s13202-015-0205-7
[13] Li, W.; Zhao, X.; Ji, Y.; Peng, H.; Chen, B.; Liu, L.; Han, X. Investigation of Biodiesel-Based Drilling Fluid, Part 1: Biodiesel Evaluation, Invert-Emulsion Properties, and Development of a Novel Emulsifier Package. SPE J. 2016, 21, 1755-1766. https://doi.org/10.2118/180918-PA
https://doi.org/10.2118/180918-PA
[14] dos Santos, W.R.; Caser, E.S.; Soares, E.J.; Siqueira, R.N. Drag Reduction in Turbulent Flows by Diutan Gum: A Very Stable Natural Drag Reducer. J. NonNewton. Fluid. Mech. 2020, 276, 104223. https://doi.org/10.1016/j.jnnfm.2019.104223
https://doi.org/10.1016/j.jnnfm.2019.104223
[15] Bello, E.I.; Adekanbi, I.T.; Akinbode, F.O. Production and Characterization of Coconut (Cocus Nucifera) Oil and its Methyl Ester. Eur. J. Pure Appl. Chem. 2016, 3, 38.
[16] Brame, S.D.; Li, L.; Mukherjee, B.; Patil, P.D.; Potisek, S.; Nguyen, Q.P. Organic Bases as Additives for Steam-Assisted Gravity Drainage. Petrol. Sci. 2019, 16, 1332-1343. https://doi.org/10.1007/s12182-019-0341-7
https://doi.org/10.1007/s12182-019-0341-7
[17] Xiao, S.; Zeng, Y.; Vavra, E.D.; He, P.; Puerto, M.; Hirasaki, G.J.; Biswal, S.L. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media. Langmuir 2018, 34, 739-749. https://doi.org/10.1021/acs.langmuir.7b02766
https://doi.org/10.1021/acs.langmuir.7b02766
[18] Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A Review of Petroleum Emulsions and Recent Progress on Water-In-Crude Oil Emulsions Stabilized by Natural Surfactants and Solids. J. Petrol. Sci. Eng. 2018, 165, 673-690. https://doi.org/10.1016/j.petrol.2018.03.014
https://doi.org/10.1016/j.petrol.2018.03.014
[19] Abraham, D.V.; Orodu, O.D.; Efeovbokhan, V.E.; Olabode, O.; Ojo, T.I. The Influence of Surfactant Concentration and Surfactant Type on the Interfacial Tension of Heavy Crude Oil/Brine/Surfactant System. Pet. Coal 2020, 62, 292-298.
[20] Hamouda, A.A.; Gupta, S. Enhancing Oil Recovery from Chalk Reservoirs by a Low-Salinity Water Flooding Mechanism and Fluid/Rock Interaction. Energies 2017, 10, 576-592. https://doi.org/10.3390/en10040576
https://doi.org/10.3390/en10040576
[21] Liu, Y.; Hu, W.; Cao, J.; Wang, X.; Zhu, F.; Tang, Q.; Gao, W. Fluid-Rock Interaction and its Effects on the Upper Triassic Tight Sandstones in the Sichuan Basin, China: Insights from Petrographic and Geochemical Study of Carbonate Cements. Sediment. Geol. 2019, 383, 121-135. https://doi.org/10.1016/j.sedgeo.2019.01.012
https://doi.org/10.1016/j.sedgeo.2019.01.012
[22] Mehraban, M.F.; Afzali, S.; Ahmadi, Z.; Mokhtari, R.; Ayatollahi, S.; Sharifi, M.; Kazemi, A.; Nasiri,M.; Fathollahi, S. Conference Proceedings, 19th European Symposium on Improved Oil Recovery, Stavanger, Norway, April 24-27, 2017; European Association of Geoscientists & Engineers: Stavanger, 2017; 1. https://doi.org/10.3997/2214-4609.201700311
https://doi.org/10.3997/2214-4609.201700311
[23] Chen, Y.; Xie, Q.; Sari, A.; Brady, P.V.; Saeedi, A. Oil/Water/Rock Wettability: Influencing Factors and Implications for Low Salinity Water Flooding in Carbonate Reservoirs. Fuel 2018, 215, 171-177. https://doi.org/10.1016/j.fuel.2017.10.031
https://doi.org/10.1016/j.fuel.2017.10.031
[24] Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-Wetting Characterization Using Contact-Angle Measurements. Nature protocols 2018, 13, 1521-1538. https://doi.org/10.1038/s41596-018-0003-z
https://doi.org/10.1038/s41596-018-0003-z
[25] Yuan, Y.; Lee, T. R. Contact Angle and Wetting Properties. In Surface Science Techniques; Bracco, G.; Holst B., Eds.; Springer Series in Surface Sciences; Springer: Berlin, Heidelberg, 2013; pp 3-34. https://doi.org/10.1007/978-3-642-34243-1_1
https://doi.org/10.1007/978-3-642-34243-1_1
[26] Jing, J.; Yin, R.; Zhu, G.; Xue, J.; Wang, S.; Wang, S. Viscosity and Contact Angle Prediction of Low Water-Containing Heavy Crude Oil Diluted with Light Oil. J. Petrol. Sci. Eng. 2019, 176, 1121-1134. https://doi.org/10.1016/j.petrol.2019.02.012
https://doi.org/10.1016/j.petrol.2019.02.012
[27] Suárez-Domínguez, E.J.; Pérez-Sánchez, J.F.; Palacio-Pérez, A.; Rodríguez-Valdes, A.; Izquierdo-Kulich, E.; González-Santana, S. A Viscosity Bio-Reducer for Extra-Heavy Crude Oil. Petrol. Sci. Technol. 2018, 36, 166-172. https://doi.org/10.1080/10916466.2017.1413387
https://doi.org/10.1080/10916466.2017.1413387
[28] Perez-Sanchez, J.F.; Diaz-Zavala, N.P.; Gonzalez-Santana, S.; Izquierdo-Kulich, E.F.; Suarez-Dominguez, E.J. Water-In-Oil Emulsions through Porous Media and the Effect of Surfactants: Theoretical Approaches. Processes 2019, 7, 620. https://doi.org/10.3390/pr7090620
https://doi.org/10.3390/pr7090620
[29] Suarez-Dominguez, E.J.; Perez-Sanchez, J.F.; Palacio-Perez A.; Izquierdo-Kulich, E.; Gonzalez-Santana, S. Flow Enhancer Influence on Non-Isothermal Systems for Heavy Crude Oil Production. Acta Universitaria [Online] 2020, 30, e2645. https://doi.org/10.15174/au.2020.2645 (accessed May 21, 2020)
https://doi.org/10.15174/au.2020.2645
[30] Perez-Sanchez, J.F.; Palacio-Perez, A.; Suarez-Dominguez, E.J.; Diaz-Zavala, N.P.; Izquierdo-Kulich, E. Evaluation of Surface Tension Modifiers for Crude Oil Transport Through Porous Media. J. Petrol. Sci. Eng. 2020, 192, 107319. https://doi.org/10.1016/j.petrol.2020.107319
https://doi.org/10.1016/j.petrol.2020.107319
[31] Luque, M.M.; Urban-Rascon, E.; Aguilera, R.F.; Aguilera, R. Mexican Unconventional Plays: Geoscience, Endowment, and Economic Considerations. SPE Reserv. Evaluation Eng. 2018, 21, 533-549. https://doi.org/10.2118/189438-PA
https://doi.org/10.2118/189438-PA
[32] Centro Nacional de Información de Hidrocarburos. Atlas Geológico Cuenca Tampico-Misantla. Centro Nacional de Información de Hidrocarburos, 2017. https://hidrocarburos.gob.mx/media/3091/atlas_geologico_cuenca_tampico-m... (accessed Oct 21, 2021)
[33] Chen, Z.; Zhang, Z.; Liu, D.; Chi, X.; Chen, W.; Chi, R. Swelling of Clay Minerals During the Leaching Process of Weathered Crust Elution-Deposited Rare Earth Ores by Magnesium Salts. Powder Technol. 2020, 367, 889-900. https://doi.org/10.1016/j.powtec.2020.04.008
https://doi.org/10.1016/j.powtec.2020.04.008
[34] Wang, Y.-L.; Yan Q.-B.; Guo Z.; Guo, G.; Deng, Q.; Zhang, J.; Chen, J. Investigation of Oleate-Diethylamine-Epichlorohydrin Copolymer as a Clay Swelling Inhibitor for Shale Oil/Gas Exploration. Petrol. Chem. 2018, 58, 245-249. https://doi.org/10.1134/S0965544118030167
https://doi.org/10.1134/S0965544118030167
[35] Mathias, S.A.; Greenwell, H.C.; Withers, C.; Erdogan, A.R.; McElwaine, J.N.; MacMinn, C. Analytical Solution for Clay Plug Swelling Experiments. Appl. Clay Sci. 2017, 149, 75-78. https://doi.org/10.1016/j.clay.2017.07.021
https://doi.org/10.1016/j.clay.2017.07.021
[36] RezaeiDoust, A.; Puntervold, T.; Austad, T. Chemical Verification of the EOR Mechanism by Using Low Saline/Smart Water in Sandstone. Energy Fuels 2011, 25, 2151-2162. https://doi.org/10.1021/ef200215y
https://doi.org/10.1021/ef200215y