Coke Quenching Plenum Equipment Corrosion and Its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production
Attachment | Size |
---|---|
full_text.pdf | 467.06 KB |
[1] Loison, R.; Foch, P.; Boyer, A. Coke. Quality and Production; Butterworth-Heinemann, 1989.
https://doi.org/10.1016/B978-0-408-02870-7.50012-2
[2] Skljar, M. Intensifikatsiya Koksovaniya i Kachestvo Koksa; Metallurgiya, 1976 (In Russian).
[3] Saranchuk, V.; Іl'jashov, M.; Oshovs'kij, V.; Bіlec'kij, V. Osnovy Khіmіi і Fіzyky Goryuchykh Kopalyn; Shіdnyi vidavnychyi dіm, 2008 (In Ukrainian).
[4] Zhang, Z.; Song, S.; Huang, J.; Ji, L.; Wu F. Investigation of Corrosion Caused by Constituents of Refinery Wastewater Effluent Used as Circulating Cooling Water. Water Environ. Res. 2003, 75, 61-65. https://doi.org/10.2175/106143003X140836
https://doi.org/10.2175/106143003X140836
[5] Tanaka, N.; Sato, S.; Watanabe, I.; Yamada, Y.; Sakurada, O. Corrosion in Tap Water and Hot Water Supply Facilities of Stainless Steel Type 304 Pipes. Mat. Sci. Appl. 2018, 9, 68-80. http://dx.doi.org/10.4236/msa.2018.91005
https://doi.org/10.4236/msa.2018.91005
[6] Sang, X.; Wang, Z.; Li, J.; Wang, H.; Su, F.; Liu, Z.; Zhang, L.; Zhu Z. Corrosion Protection of Carbon Steel in Circulating Cooling Water by Open-chain Carboxyethyltin and Transition Metal Co-functionalized Tungstogermanates. ChemistrySelect 2010, 4, 7358-7362. https://doi.org/10.1002/slct.201800789
https://doi.org/10.1002/slct.201800789
[7] Topilnytsky, P.; Romanchuk, V.; Yarmola, T. Production of Corrosion Inhibitors for Oil Refining Equipment Using Natural Components. Chem. Chem. Technol. 2018, 12, 400-404. https://doi.org/10.23939/chcht12.03.400
https://doi.org/10.23939/chcht12.03.400
[8] Shmandiy, V.; Bezdeneznych, L.; Kharlamova, O.; Svjatenko, A.; Malovanyy, M.; Petrushka, K.; Polyuzhyn, I. Methods of Salt Content Stabilization in Circulating Water Supply Systems. Chem. Chem. Technol. 2017, 11, 242-246. https://doi.org/10.23939/chcht11.02.242
https://doi.org/10.23939/chcht11.02.242
[9] Yang, B., He, J., Zhang, G., Guo, L. Vanadium: Extraction, Manufacturing and Applications; Elsevier, 2020.
[10] Bondar, O.; Vorobyova, V.; Kurmakova, I.; Chygyrynets, O. Aminooxoethylpyridinium Chlorides as Inhibitors of Mild Steel Acid Corrosion. Chem. Chem. Technol. 2018, 12, 127-133. https://doi.org/10.23939/chcht12.01.127
https://doi.org/10.23939/chcht12.01.127
[11] Standard Test Methods for Ammonia Nitrogen in Water, 2021. https://www.astm.org/d1426-15r21e01.html (accessed 2021-12-22).
[12] Standard Test Methods for Phenolic Compounds in Water, 2020. https://www.astm.org/d1783-01r20.html (accessed 2020-01-17).
[13] Standard Test Method for Sulfate Ion in Water, 2017. https://www.astm.org/Standards/D516.htm (accessed 2020-02-03).
[14] Standard Test Method for Sulfide Ion in Water, 2017. https://www.astm.org/d4658-15.html (accessed 2020-02-08).
[15] Standard Test Methods for Calcium and Magnesium in Water, 2021. https://www.astm.org/d0511-14r21e01.html (accessed 2021-12-06).
[16] Standard Test Method for Hardness in Water, 2017. https://www.astm.org/d1126-17.html (accessed 2017-12-15).
[17] Standard Test Method for Thiocyanate in Water, 2010. https://www.astm.org/d4193-02.html (accessed 2010-12-31).
[18] Standard Test Methods for Cyanides in Water, 2018. https://www.astm.org/d2036-09r15.html (accessed 2010-02-09).
[19] Standard Test Methods for Chlorides in Water, 2021. https://www.astm.org/d0512-12.html (accessed 2020-10-19).
[20] Standard Test Methods for Nitrite-Nitrate in Water, 2021. https://www.astm.org/d3867-16r21e01.html (accessed 2010-12-23).
[21] Standard Test Methods for Iron in Water, 2016. https://www.astm.org/d1068-15.html (accessed 2016-12-27).
[22] Standard Test Methods for Filterable Matter (Total Dissolved Solids) and Nonfilterable Matter (Total Suspended Solids) in Water, 2018. https://www.astm.org/d5907-13.html (accessed 2018-05-31).
[23] Deyab, M. A.; Guibal, E. Enhancement of Corrosion Resistance of the Cooling Systems in Desalination Plants by Green Inhibitor. Sci. Rep. 2020, 10, 4812. https://www.nature.com/articles/s41598-020-61810-9
https://doi.org/10.1038/s41598-020-61810-9
[24] Jin, J.; Wu, G.; He, K; Chen, J.; Xu, G.; Guan, Y. Effect of Ions on Carbon Steel Corrosion in Cooling Systems With Reclaimed Wastewater as the Alternative Makeup Water. Desalination Water Treat. 2013, 52, 7565-7574. https://doi.org/10.1080/19443994.2013.832636
https://doi.org/10.1080/19443994.2013.832636
[25] Pilipenko, A.; Pancheva, H.; Reznichenko, G.; Myrgorod, O.; Miroshnichenko, N.; Sincheskul, A. The Study of Inhibiting Structural Material Corrosion in Water Recycling Systems by Sodium Hydroxide. EasternEuropean J. Enterp. Technol. 2017, 2, 21-28. http://journals.uran.ua/eejet/article/view/95989
https://doi.org/10.15587/1729-4061.2017.95989
[26] Pancheva, H.; Reznichenko, G.; Miroshnichenko, N.; Sincheskul, A.; Pilipenko, A.; Loboichenko, V. Study Into the Influence of Concentration of Ions of Chlorine and Temperature of Circulating Water on the Corrosion Stability of Carbon Steel and Cast Iron. EasternEuropean J. Enterp. Technol. 2017, 4, 59-64. https://doi.org/10.15587/1729-4061.2017.108908
https://doi.org/10.15587/1729-4061.2017.108908
[27] Smyrnov, O. O.; Shepil, T. E.; Kozin, V. Yu.; Bezhenko, A. O.; Rutkovska, K. S.; Pylypenko, O. I. Corrosion Resistance of Structural Materials in Tungstate Solutions. Mater. Sci. 2020, 55, 664-671. https://doi.org/10.1007/s11003-020-00357-6
https://doi.org/10.1007/s11003-020-00357-6
[28] Ahmed, S. A.; Makki H. F. Books of Abstracts, 2nd International Conference on Materials Engineering & Science (IConMEAS 2019), Baghdad, Iraq, September 25-29, 2019; Dahham, O. S.; Zulkepli, N. N. Ed.: AIP Publishing, 2020.
[29] Shin, S.-B.; Song, S.-J.; Shin, Y.-W.; Kim, J.-G.; Park, B.-J.; Suh, Y.-C. Effect of Molybdenum on the Corrosion of Low Alloy Steels in Synthetic Seawater. Mater. Trans. 2016, 57, 2116-2121. https://doi:10.2320/matertrans.M2016222
https://doi.org/10.2320/matertrans.M2016222