Investigation of the structural properties of porous material according to the sorption isotherms and drainage curves

Holubets T.
PDF icon 2016_3_1_023_032.pdf334.19 KB
In this paper in the compliance with the method of the local averaging, the basic relations of surface physics and thermodynamics for the description of diffusion process of the liquid and gas phases in the inhomogeneous porous media have been considered. In line with the drainage and sorption properties of the liquid in the porous skeleton, the normalized function of distribution of the pore size for the effective radius has been defined. The relations for the determination of the intrinsic and relative permeability of phases in the solid skeleton have been proposed. The dependence of the intrinsic permeability on the structural properties of porous material has been analyzed. A simple condition of the equilibrium of phases in the porous skeleton with surrounding medium has been obtained.
  1. Schuds F., Sing K. S. W., J. Weitkamp. Handbook of Porous Solid. Weinheim Wiley VCH Verlag GmbH. 3141 (2002).
  2. Whitaker S. Simultaneous Heat, Mass and Momentum Transfer in Porous Media: a Theory of Drying. Adv. In Heat Transfer. 13, 119–203 (1997).
  3. Wyrwal J. Termodynamiczne podstawy fizyki budowli. Oficyna Wydawnicza Politechniki Opolskiej (2004).
  4. Hachkevych O. R, Terletskii R. F., Holubets T. V. Evaluation of effective electro physical characteristics for the dewy porous materials. Mathematical methods and physicomechanical fields. 52, n. 1, 159–171 (2009).
  5. Rhodes M. Introduction to Particle Technology. New York: Wiley & Sons. (2008).
  6. Hormund U. Homogenisation and porous media. New York: Springer Science&Business Media (1997).
  7. Pinder G. F., Gray W. G. Essentials of multiphase flow and transport in porous media. Hoboken, New Jersey: Wiley & Sons, Inc. (2008).
  8. Honarpour М., Koederitz L., Harvey A. H. Relative Permeability of Petroleum Reservoirs. USA, Boca Raton, Florida: CRC Press. (1986).
  9. Gregg S. J., Sing K. S. W. Adsorption, Surface Area and Porosity. London Toronto: Academic Press. (1982).
  10. Brooks R. H., Corey A. T. Properties of Porous Media Affecting Fluid Flow. Journal of the Irrigation and Drainage Division, Proceedings of the American Society of Civil Engineers (ASCE). 92, n. I, 61–88 (1966).
  11. Van Genuchten M. T. A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal. 44, n. 5, 892–898 (1980).
  12. Defay R., Prigogine I. Surface Tension and Adsorption. New York: Wiley & Sons (1966).
  13. Harrison L. P. Fundamental Concepts and Definitions Relating to Humidity and Moisture Measurement and Control in Science and Industry. Proc. Int. Symp. On Humidity and Moisture, Vol.3 Fundamentals and Standarts, Reinhold, New York, 3–256 (1965).
  14. Bear J., Cheng A. H. D. Modeling Groundwater Flow and Contaminant Transport. Dordrecht New York: Springer (2010).
  15. Hunt A. G. Percolation Theory for Flow in Porous Media. Lecture notes in physics. Berlin Heidelberg New York: Springer (2005).
  16. Hilfer R. Transport and relaxation phenomena in porous media. Advances in Chemical Physics. 92, 299–424 (1996).
  17. Mualem Y. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water resources Research. 12, n. 4, 513–522 (1976).
  18. Luckner L., van Genuchten M. T., Nielsen D. R. A Consistent Set of Parametric Models for the Two Phase Flow of Immiscible Fluids in the Subsurface. Water Resources Research. 25, n. 10, 2187–2193 (1989).
  19. Baggio P., Bonacina C., Grinzato E., Bison P., Bressan C. Determinazione delle caratteristiche termoigrometriche dei materiali da costruzione porozi. Proc. 47th Congresso Nazionale ATI, Parma. 355–365 (1992).
Math. Model. Comput. Vol.3, No.1, pp.23-32 (2016)