Electron spectrum of intercalated stage ordered layered structures: Periodic Anderson model approach

Stasyuk I. V., Velychko O. V.
AttachmentSize
PDF icon 2015_2_2_191_203.pdf495.05 KB
Abstract: 
Influence of intercalation on the electronic band structure of the layered nanohybrid compound of the GaSe-type with a stage ordering (three layers in the packet in the considered case) is studied in the modified version of the periodic Anderson model. Density of electron states for the intercalated system is calculated both in the impurity single-level approximation and the one with the level smearing out (of the Lorentzian-type) due to local electron correlations. Intercalated particles form an additional band (usually placed near the bottom of the main band) like the narrow impurity band (being far enough from the main band) or the more extended band hybridized with the main one (for the case of overlapping). The most pronounced transformation of the main band takes place in the vicinity of the impurity level. Changes in the total density of electron states due to the broadening of impurity levels and the increase of the intercalant concentration are analyzed.
References: 
  1. Mooser E., Schlüter M. The band-gap excitons in gallium selenide. Il Nuovo Cimento B 18, 164 (1973).
  2. Grygorchak I. I., Kovalyuk Z. D., Mintyanskii I. V. Photopolarization processes in LixGaSe and LixInSe intercalates. Solid State Physics 31, 222 (1989).
  3. Grygorchak I. I., Matulka D. V., Ivashchyshyn F. O., Zaichenko O. S., Mitina N. Ye., Moskvin M. M. Supramolecular assemblies of configuration inorganic semiconductor/oligomer. Physical surface engineering 10, 256 (2012).
  4. Fivaz R., Mooser E. Electron-phonon interaction in semiconducting layer structures. Phys. Rev. 136, A833 (1964).
  5. Fivaz R. Theory of layer structures. J. Phys. Chem. Solids. 28, 839 (1967).
  6. DiMasi E., Foran B., Aronson M.C., Lee S. Stability of charge-density waves under continuous variation of band filling in LaTe2−xSbx ($0\leqslant x \leqslant 1$). Phys. Rev. B 54, 13587 (1996).
  7. Shin K. Y., Ru N., Fisher I. R., Condron C. L., Toney M. F., Wu Y. Q., Kramer M. J. Observation of two separate charge density wave transitions in Gd2Te5 via transmission electron microscopy and high-resolution X-ray diffraction. Journal of Alloys and Compounds 489, 332 (2010).
  8. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
  9. Stasyuk I. V., Velychko O. V. The study of electronic states in highly anisotropic layered structures with stage ordering. J. Phys. Studies 18, 2002 (2014) [in Ukrainian].
  10. Esaki L. Advances in semiconductor superlattices, quantum wells and heterostructures. Journal de Physique Colloques 45(C5), C5-3 (1984).
  11. Fulde P. Electron correlations in molecules and solids. (Springer series in solid-state sciences; 100). Springer, Berlin Heidelberg (1995).
  12. Hubbard J. Electron correlations in narrow energy bands. IV. The atomic representation. Proc. R. Soc. Lond. A 285, 542 (1965).
  13. Stasyuk I.V. Green’s functions in quantum statistics of solids. Lviv National University Publ., Lviv (2013) [in Ukrainian].
  14. Zubarev D.N. Double-time Green functions in statistical physics. Sov. Phys. Usp. 3, 320 (1960).
  15. Nordheim L. Zur Elektronentheorie der Metalle. I. Ann. Phys. 401, 607 (1931) [in German]; Nordheim L. Zur Elektronentheorie der Metalle. II. Ann. Phys. 401, 641 (1931) [in German]; Muto T. On the electronic structure of alloys. Scientific Papers of the Institute of Physical and Chemical Research (Tokyo) 34, 377 (1938).
  16. Ferrando R., Jellinek J., Johnston R.L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews, 108, 845 (2008).
  17. Pesz K., Munn R.W. Densities of states and anisotropy in tight-binding models. J. Phys. C: Solid State Phys. 19, 2499 (1986).
Bibliography: 
Math. Model. Comput. Vol.2, No.2, pp.191-203 (2015)