| Attachment | Size |
|---|---|
| 743.96 KB |
[1] Garrod, R.T.; Jin, M.; Matis, K.A.; Jones, D.; Willis, E.R.; Herbst, E. Formation of Complex Organic Molecules in Hot Molecular Cores Through Nondiffusive Grain-Surface and Ice-Mantle Chemistry. Astrophys J Suppl Ser 2022, 259, 1. https://doi.org/10.3847/1538-4365/ac3131
https://doi.org/10.3847/1538-4365/ac3131
[2] Klessinger, M.; Pötter, T. Properties of Molecules in Excited States. In Theoretical Models of Chemical Bonding: Part 3: Molecular Spectroscopy, Electronic Structure and Intramolecular Interactions; Maksić, Z.B., Ed.; Springer, 1991; pp. 521-544. https://doi.org/10.1007/978-3-642-58179-3_13
https://doi.org/10.1007/978-3-642-58179-3_13
[3] Crim, F.F. Chemical Dynamics of Vibrationally Excited Molecules: Controlling Reactions in Gases and on Surfaces. Proc Natl Acad Sci U S A 2008, 105, 12654-12661. https://doi.org/10.1073/pnas.0803010105
https://doi.org/10.1073/pnas.0803010105
[4] Westermayr, J.; Marquetand, P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021, 121, 9873-9926. https://doi.org/10.1021/acs.chemrev.0c00749
https://doi.org/10.1021/acs.chemrev.0c00749
[5] Chen, Z.; Liu, Z.; Xu, X. Accurate Descriptions of Molecule-Surface Interactions in Electrocatalytic CO2 Reduction on the Copper Surfaces. Nat Commun 2023, 14, 936. https://doi.org/10.1038/s41467-023-36695-7
https://doi.org/10.1038/s41467-023-36695-7
[6] Liao, W.; Kang, S.; Chu, Z.; Liu, Z.; Wang, Y.; Yang, B. Exploring the Low-Temperature Oxidation Chemistry with Ozone Addition in an RCM: A Case Study on Ethanol. Combust Flame 2022, 237, 111727. https://doi.org/10.1016/j.combustflame.2021.111727
https://doi.org/10.1016/j.combustflame.2021.111727
[7] Lyubchik, S.; Lygina, E.; Lyubchyk, A.; Lyubchik, S.; Loureiro, J.M.; Fonseca, I.M.; Ribeiro, A.B.; Pinto, M.M.; Figueiredo, A.M.S. The Kinetic Parameters Evaluation for the Adsorption Processes at "Liquid-Solid" Interface. In Electrokinetics Across Disciplines and Continents; Ribeiro, A.; Mateus, E.; Couto, N., Eds; Springer, Cham., 2016; pp 81-109. https://doi.org/10.1007/978-3-319-20179-5_5
https://doi.org/10.1007/978-3-319-20179-5_5
[8] Wang, H.; Dlugogorski, B.Z.; Kennedy, E.M. Coal Oxidation at Low Temperatures: Oxygen Consumption, Oxidation Products, Reaction Mechanism and Kinetic Modelling. Prog Energy Combust Sci 2003, 29, 487-513. https://doi.org/10.1016/s0360-1285(03)00042-x
https://doi.org/10.1016/S0360-1285(03)00042-X
[9] Rathnachalam, S. Excited-State Processes in Biomolecules; University of Groningen, 2022. https://doi.org/10.33612/diss.257112854
https://doi.org/10.33612/diss.257112854
[10] Koval, Y.M.; Kutsova, V.Z.; Kovzel, M.A.; Shvets, P.Y. Features of structure formation, kinetics of phase transformations, mechanical and tribological properties of the Fe-based Cr-Mn-Ni alloys. Prog Phys Met 2020, 21(2), 180-248. https://doi.org/10.15407/ufm.21.02.180
https://doi.org/10.15407/ufm.21.02.180
[11] Liu, Y.; Hu, M.-G.; Nichols, M.A.; Grimes, D.D.; Karman, T.; Guo, H.; Ni, K.-K. Photo-Excitation of Long-Lived Transient Intermediates in Ultracold Reactions. Nat Phys 2020, 16, 1132-1136. https://doi.org/10.1038/s41567-020-0968-8
https://doi.org/10.1038/s41567-020-0968-8
[12] Ibele, L.M.; Sánchez-Murcia, P.A.; Mai, S.; Nogueira, J.J.; González, L. Excimer Intermediates en Route to Long-Lived Charge-Transfer States in Single-Stranded Adenine DNA as Revealed by Nonadiabatic Dynamics. J Phys Chem Lett 2020, 11, 7483-7488. https://doi.org/10.1021/acs.jpclett.0c02193
https://doi.org/10.1021/acs.jpclett.0c02193
[13] Sargsyan, G.; Silveistr, A.; Lysyi, M.; Mokliuk, M.; Sargsyan, H. The Appearance of Standing Wave Structures in the Reaction Medium during the Diffusion Development of the Chain Reaction Process. Scientific Herald of Uzhhorod University. Physics 2023, 54, 36-46. https://doi.org/10.54919/physics/54.2023.36
https://doi.org/10.54919/physics/54.2023.36
[14] Khardazi, S.; Zaitouni, H.; Neqali, A.; Lyubchyk, S.; Mezzane, D.; Amjoud, M.; Choukri, E.; Kutnjak, Z. Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method. J Phys Chem Sol 2023, 177, 111302. https://doi.org/10.1016/j.jpcs.2023.111302
https://doi.org/10.1016/j.jpcs.2023.111302
[15] Dinzhos, R.V.; Privalko, E.G.; Privalko, V.P. Enthalpy Relaxation in the Cooling/Heating Cycles of Polyamide 6/ Organoclay Nanocomposites. I. Nonisothermal Crystallization. J Macromolec Sci Phys 2005, 44, 421-430. https://doi.org/10.1081/MB-200061610
https://doi.org/10.1081/MB-200061610
[16] Doroshkevich, A.S.; Lyubchyk, A.I.; Shilo, A.V.; Zelenyak, T.Yu.; Glazunova, V.A.; Burhovetskiy, V.V.; Saprykina, A.V.; Holmurodov, Kh.T.; Nosolev, I.K.; Doroshkevich, V.S.; et al. Chemical-Electric Energy Conversion Effect in Zirconia Nanopowder Systems. J Surf Investig 2017, 11, 523-529. https://doi.org/10.1134/S1027451017030053
https://doi.org/10.1134/S1027451017030053
[17] Privalko, V.P.; Dinzhos, R.V.; Rekhteta, N.A.; Calleja, F.J.B. Structure-Diamagnetic Susceptibility Correlations in Regular Alternating Terpolymers of Ethene and Propene with Carbon Monoxide. J Macromolec Sci Phys 2003, 42, 929-938. https://doi.org/10.1081/MB-120023548
https://doi.org/10.1081/MB-120023548
[18] Petrov, E.G.; Shevchenko, Y.V.; Gorbach, V.V.; Lyubchik, S.; Lyubchik, A. Features of Gate-Tunable and Photon-Field-Controlled Optoelectronic Processes in a Molecular Junction: Application to a ZnPc-Based Transistor. AIP Adv 2022, 12, 105020. https://doi.org/10.1063/5.0119257
https://doi.org/10.1063/5.0119257
[19] Prokopov, V.G.; Shvets, Y.I.; Fialko, N.M.; Meranova, N.O.; Korzhik, V.N.; Borisov, Y.S. Mathematical-Modeling of the Convective Heat-Transfer Processes During Formation of the Gas-Thermal Coating Layer. Dopovidi AN URSR 1989, 6, 71-76.
[20] Prokopov, V.G.; Fialko, N.M.; Sherenkovskaya, G.P.; Yurchuk, V.L.; Borisov, Y.S.; Murashov, A.P.; Korzhik, V.N. Effect of Coating Porosity on the Process of Heat-Transfer with Gas-Thermal Deposition. Pow Metall Met Ceram 1993, 32, 118-121. https://doi.org/10.1007/BF00560034
https://doi.org/10.1007/BF00560034
[21] Tanner, P.A.; Thor, W.; Zhang, Y.; Wong, K.-L. Energy Transfer Mechanism and Quantitative Modeling of Rate from an Antenna to a Lanthanide Ion. J Phys Chem A 2022, 126, 7418-7431. https://doi.org/10.1021/acs.jpca.2c03965
https://doi.org/10.1021/acs.jpca.2c03965
[22] Witting, C. Photochemistry, Molecular. In Encyclopedia of Physical Science and Technology; Meyers, R.A., Ed.; Academic Press, 2003; pp. 29-47. https://doi.org/10.1016/B0-12-227410-5/00563-9
https://doi.org/10.1016/B0-12-227410-5/00563-9
[23] Stuhr, R.; Bayer, P.; von Wangelin, A.J. The Diverse Modes of Oxygen Reactivity in Life & Chemistry. ChemSusChem 2022, 15, e202201323. https://doi.org/10.1002/cssc.202201323
https://doi.org/10.1002/cssc.202201323
[24] Al‐Nu'airat, J.; Oluwoye, I.; Zeinali, N.; Altarawneh, M.; Dlugogorski, B.Z. Review of Chemical Reactivity of Singlet Oxygen with Organic Fuels and Contaminants. Chem Rec 2020, 21, 315-342. https://doi.org/10.1002/tcr.202000143
https://doi.org/10.1002/tcr.202000143
[25] Lee, D.-G.; Isworo, Y.Y.; Park, K.-H.; Kim, G.-M.; Kim, S.-M.; Jeon, C.-H. Low-Temperature Oxidation Reactivity of Low-Rank Coals and Their Petrographic Properties. ACS Omega 2020, 5, 18594-18601. https://doi.org/10.1021/acsomega.0c00840
https://doi.org/10.1021/acsomega.0c00840
[26] May, V.; Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems; Wiley‐VCH Verlag GmbH & Co. KGaA, 2011. https://doi.org/10.1002/9783527633791
https://doi.org/10.1002/9783527633791
[27] Sargsyan, G.N.; Evinyan, M.A.; Gukasyan, P.S.; Sargsyan, H.P. Modeling of Hydrocarbons and Hydrogen Oxidation in the Presence of Surface-Active Centers Water-Negative Halogen Ion in Terms of the Formation of Weak Shock Waves. J Contemp Phys 2022, 57, 297-302. https://doi.org/10.1134/S1068337222030148
https://doi.org/10.1134/S1068337222030148
[28] Cassani, A.; Monteverde, A.; Piumetti, M. Belousov-Zhabotinsky Type Reactions: The Non-Linear Behavior of Chemical Systems. J Math Chem 2021, 59, 792-826. https://doi.org/10.1007/s10910-021-01223-9
https://doi.org/10.1007/s10910-021-01223-9
[29] Pribus, M.; Orlik, M.; Valent, I. From Classical Metal-Catalyzed Homogeneous Oscillators to an Uncatalyzed Version of the Belousov-Zhabotinsky Reaction: A Review. React Kinet Mech Catal 2022, 135, 1211-1260. https://doi.org/10.1007/s11144-021-02151-0
https://doi.org/10.1007/s11144-021-02151-0
[30] Yuan, L.; Wang, H.; Meng, C.; Cheng, Z.; Lv, X.; Gao, Q. Multiple Iodide Autocatalysis Paths of Chemo-Hydrodynamical Patterns in the Briggs-Rauscher Reaction. Phys Chem Chem Phys 2023, 25, 13183-13188. https://doi.org/10.1039/d3cp00011g
https://doi.org/10.1039/D3CP00011G
[31] Zhou, Y.; Uddin, W.; Hu, G. Kinetic Identification of Three Metal Ions by Using a Briggs-Rauscher Oscillating System. Microchem J 2021, 160, 105617. https://doi.org/10.1016/j.microc.2020.105617
https://doi.org/10.1016/j.microc.2020.105617
[32] Rizvi, S.T.R.; Seadawy, A.R.; Abbas, S.O.; Latif, S.; Althobaiti, S. Exact and Numerical Solutions to the System of the Chlorite Iodide Malonic Acid Chemical Reactions. Comput Appl Math 2021, 41, 13. https://doi.org/10.1007/s40314-021-01704-2
https://doi.org/10.1007/s40314-021-01704-2
[33] Yang, C.; Su, F.; Xu, Y.; Ma, Y.; Tang, L.; Zhou, N.; Liang, E.; Wang, G.; Tang, J. pH Oscillator-Driven Jellyfish-Like Hydrogel Actuator with Dissipative Synergy Between Deformation and Fluorescence Color Change. ACS Macro Lett 2022, 11, 347-353. https://doi.org/10.1021/acsmacrolett.2c00002
https://doi.org/10.1021/acsmacrolett.2c00002
[34] Gentili, P.L.; Baldinelli, L.; Bartolomei, B. Design of a New Photochromic Oscillator: Towards Dynamical Models of Pacemaker Neurons. React Kinet Mech Catal 2022, 135, 1281-1297. https://doi.org/10.1007/s11144-021-02122-5
https://doi.org/10.1007/s11144-021-02122-5
[35] Jiménez, A.; Lu, Y.; Jambhekar, A.; Lahav, G. Principles, Mechanisms and Functions of Entrainment in Biological Oscillators. Interface Focus 2022, 12, 20210088. https://doi.org/10.1098/rsfs.2021.0088
https://doi.org/10.1098/rsfs.2021.0088
[36] Zhang, W.; Li, W.; Song, Y.; Xu, Q.; Xu, H. Bacterial Detection Based on Förster Resonance Energy Transfer. Biosens Bioelectron 2024, 255, 116244. https://doi.org/10.1016/j.bios.2024.116244
https://doi.org/10.1016/j.bios.2024.116244
[37] Zheng, S.-W.; Wang, H.; Wang, L.; Wang, H.-Y. Dexter‐Type Exciton Transfer in Van Der Waals Heterostructures. Adv Funct Mater 2022, 32, 2201123. https://doi.org/10.1002/adfm.202201123
https://doi.org/10.1002/adfm.202201123
[38] Lindsey, J.S.; Taniguchi, M.; Bocian, D.F.; Holten, D. The Fluorescence Quantum Yield Parameter in Förster Resonance Energy Transfer (FRET) - Meaning, Misperception, and Molecular Design. Chem Phys Rev 2021, 2, 011302. https://doi.org/10.1063/5.0041132
https://doi.org/10.1063/5.0041132
[39] Zimmerman, I.H.; George, T.F. Quantum Resonance Effects in Electronic-To-Vibrational Energy Transfer in Molecular Collisions. J Chem Phys 1974, 61, 2468-2470. https://doi.org/10.1063/1.1682354
https://doi.org/10.1063/1.1682354
[40] Makido, O.; Khovanets', G.; Kochubei, V.; Yevchuk, I. Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application. Chem Chem Technol 2022, 16, 227-236. https://doi.org/10.23939/chcht16.02.227
https://doi.org/10.23939/chcht16.02.227
[41] Ali, S.H.; Mohammed, S.S.; Al-Dokheily, M.E.; Algharagholy, L. Photocatalytic Activity of Defective TiO2-x for Water Treatment/Methyl Orange Dye Degradation. Chem Chem Technol 2022, 16, 639-651. https://doi.org/10.23939/chcht16.04.639
https://doi.org/10.23939/chcht16.04.639